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FOREWORD

This final report summarizes the research performed by S-CUBED under AFOSR
Contract F49620-84-C-0029 during the period from March 1, 1984. to July 31, 1988.
Partial support for portions of the research was provided by the Defense Nuclear
Agency under Contract DNA001-84-C-0127. The Co-Principal Investigators for the
project were Dr. G. A. Hegemier and Dr. H. E. Read. The AFOSR Contract
Technical Monitors were, initially, Lt. Col. L. D. Hokanson and, later on. Dr. Spencer
T. Wu.

Drs. Hegemier and Murakami, Consultants to S-CUBED, are also, respectively,
Professor and Associate Professor of Applied Mechanics at the University of California,
San Diego. Dr. Valanis, an S-CUBED Consultant, presently operates his own research
and consulting company, called ENDOCHRONICS. Inc.

The authors express their appreciation to Dr. D. H. Brownell and Mr. R. G.
Herrmann. who provided excellent computational support throughout the course of the
research.
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ADVANCED CONSTITUTIVE MODELING OF
PLAIN AND REINFORCED CONCRETES

Section I
INTRODUCTION

1.1 BACKGROUND.

Diring the past several years, the Air Force has been deeply involved in an
extensive effort to develop, and assess the feasibility and relative effectiveness of.
various candidate modes for basing the MX strategic weapons system. In most of
these basing modes, the key elements are large reinforced concrete structures, called

* protective structures, which are designed to protect a missile from the shock loads
prescribed by the design attack scenarios. The enormous costs involved in
constructing the large number of such structures required by the system dictates that
their design be not only safe, but cost-effective as well.

• In the event that the enemy threat changes, it is also important for the strategic
system designer to know the ultimate hardness of the concrete protective structures,
so that the survivability of the system with regard to the new threat can be readily
assessed. The most expeditious and economical way to do this is through the use of
validated analytical models of the structure's behavior. There is, accordingly, a need to

_ •have reliable analytical models that can predict the loading environments for which
complex reinforced concrete structures will collapse, or incur sufficient damage to
render them functionally inoperable.

1.2 OBJECTIVE

The objective of the overall research program described here is to construct an
advanced, nonlinear, multi-axial, non-phenomenological constitutive model of reinforced
concrete that will provide simulation accuracy in the nonlinear response regime that is
superior to existing models. The term 'advanced nonlinear multi-axial' implies a

* model that provides greater accuracy than existing models in the inelastic, nonlinear
response regime and for arbitrary paths in multi-axial stress or strain space. The
term 'non-phenomenological' implies a model that is capable of synthesizing the global
properties of reinforced concrete from knowledge of the plain concrete and steel
properties, the concrete-steel interface properties, and the geometry of the steel

* reinforcement.

• . i l I I I I I I I1



A non-phenomenological reinforced concrete theory requires, as input, constitutive
models for each of the basic constituents, namely, steel rebar and plain concrete.
The accuracy of the resulting reinforced concrete theory depends heavily on the
accuracy with which one can model these two constituents. The constitutive

* properties of steel are well known and can be adequately represented by reasonable
simple elasto-plastic models. Plain concrete, on the other hand. is one of the most
complex structural materials in current use and, despite numerous efforts in recent
years to mathematically model its properties, there is today still no model which can
adequately describe its nonlinear constitutive properties over a wide range of behavior,

* including damage accumulation and post-cracking response. As a result, the major
challenges that one faces in attempting to develop an accurate constitutive theory for
reinforced concrete are twofold; namely, (1) development of a mixture theory which
accurately accounts for the interaction between the rebar and plain concrete: and
(2) formulation of a constitutive theory for plain concrete which adequately describes

* its nonlinear, inelastic properties, including damage and cracking. for arbitrary, multi-
axial load paths. Accordingly, two major areas of research have been pursued in
parallel, concurrent efforts under the present program: namely. (1) development of a
mixture theory which accounts for concrete-rebar interaction in a realistic manner; and
(2) development of a plain concrete model.

0
Detailed documentation of the research conducted during the first three years of

this study can be found in the Annual Reports by Hegemier, Read, Valanis and
Murakami (1985, 1986, 1987). Details of the research performed during the past
(fourth) year are described in the topical reports by Hegemier, Murakami and Sweet

_ (1988) and by Read (1988). The major accomplishments made during the course
of the entire program are summarized in this report, and the reader is referred to
either the Annual Reports or to the various published papers and Topical reports for
further details of the research accomplishments.

* A list of the publications which resulted from this contract is given in Section 4.

** These topical reports are included as part of the present report in Appendices A
and B.



• Section 2
REINFORCED CONCRETE

2.1 THE PROBLEM.

0 The nonlinear, inelastic behavior of reinforced concrete is dominated by complex
interactions between the steel rebar and the concrete. These interactions have a
major effect on structural characteristics such as stiffness, strength. damping and
ductility. As a result, it is necessary that a model of reinforced concrete reflect these
phenomena in an accurate and realistic manner. Further, in an effort to minimize the

* number and types of tests necessary to define model parameters, it is desirable that
the model be non-phenomenological. i.e.. that the global properties of reinforced
concrete be synthesized from the properties of (1) the steel and concrete, (2) the
steel-concrete interface physics and (3) the steel layout.

* 2.2 ACCOMPLISHMENTS.

A theoretical formulation of the type outlined above constitutes a new, advanced
model of reinforced concrete which has predictive capabilities far superior to existing
models. In an effort to bring such a model to fruition, the following tasks were

4 accomplished as part of this program:

1. Formulation of a methodology for constructing an advanced
theoretical model of reinforced concrete which correctly reflects
steel-concrete interaction;

10
2. Construction of a first generation model of reinforced concrete using

the results from the above task;

3. Construction of numerical algorithms and a special-purpose computer
* program which allows one to exercise the developed model for a

limited class of test problems;

4. Simulation of special problems (case studies) using the special
purpose code developed under the above task.

0
5. Conduct of a detailed literature search and evaluation of available

experimental data on the behavior of reinforced concrete.

0
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6. Performance of model validations consisting of experimental-
theoretical comparisons of important response features.

7. Performance of a parametric study in an effort to determine the
* influence of basic material and geometric properties on damage

accumulation and failure conditions.

Under Tasks 1 and 2. a new, advanced model of reinforced concrete with a
dense unidirectional steel layout was constructed (Hegemier and Murakami, 1985;

* Murakami and Hegemier. 1986: Hegemier, Read, Valanis and Murakami, 1986). The
construction technique was based upon the use of multivariable asymptotic expansions.
a variational principle, and certain smoothing operations. The resulting model was
cast into the form of a binary mixture which resembles an overlay of two continua:
steel and concrete. These continua interact via body forced which are functionals of

* the relative global displacements of the continua. The theory is fully nonlinear and it
incorporates the following basic physical phenomena; rebar yielding, steel-concrete
bond degradation and slip, dowel action, and progressive concrete cracking (which is
treated explicitly). The model furnishes both global and local (to a certain degree of
accuracy) measures of deformation, stress and damage. Response characteristics such

* as stiffness degradation, ductility, hysteresis, strain hardening, and certain failure
models evolve naturally as the deformation proceeds.

The validations performed under Task 6 reveal that the theoretical framework
developed leads to a model of reinforced concrete which is capable of accurate
predictions of complex response characteristics. (Hageman, Murakami and Hegemier,
1986; Hegemier, Murakami and Hageman. 1984; Hegemier and Murakami. 1986;
Murakami and Hegemier, 1986.) Specifically, the validation tests performed to-date
clearly indicate that the model correctly simulates progressive concrete primary cracking
(Hegemier, Murakami and Hageman. 1984), steel-concrete bond degradation and slip

* (Hageman, Murakami and Hegemier, 1986; Hegemier, Murakami and Hageman, 1984),
steel-concrete duv J action (Murakami and Hegemier. 1986). and certain failure modes
(Hegemier. Read, Valanis and Murakami, 1986).

Under Task 7. an extensive parametric study (Hegemier, Murakami, and Sweet,
1988). which is included herein as Appendix A for the convenience of the reader, was
performed using the developed advanced reinforced concrete model. The purpose of
this study was to ascertain the influence of fundamental material, interface, and

4
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* geometric properties on the nonlinear response characteristics of reinforced concrete.
Of primary interest in this study was damage accumulation, overall ductility, and
failure modes/conditions. The damage mechanisms that were examined included
progressive concrete cracking, steel-concrete bond slip, and rebar yielding. Parameters
that were varied included the concrete tensile strength, the steel-concrete bond

* strength, and rebar yield stress and hardening characteristics, the steel volume
fraction, and the total steel surface area. Combinations of these parameters were
discovered that allowed a concise graphical description of their affects on material
response. The latter should be of considerable value to the practicing engineer.

* Finally, during the last research period the unidirectional theory noted above was
extended to include multidirectional steel layouts. The latter was selected in the form
of an orthogonal net. Details concerning the derivation and form of the resulting
theory are contained in Appendix A.

* 2.3 FUTURE STUDIES

It is recommended that future studies be focused upon two main areas. These
are: (1) advanced validation tests in the form of response simulations of elementary
structural elements under shear, bending, direct compression, and combinations thereof;

* and (2) the development and application of smoothing operations for the crack field.
Item (1) is self-evident. Item (2). however, deserves comment.

Currently the model development process homogenizes the steel and concrete via
appropriate smoothing operations. These operations lead, as was noted previously, to

• a model which resembles an overlay of two continua: steel and concrete. The
evolving concrete crack field, however, is not homogenized, i.e., cracks must presently
be followed explicitly. This feature of the model renders it difficult to use from a
computational standpoint. As a consequence, some form of crack field smoothing
should be explored in an effort to simplify the model computationally.

5



* Section 3

PLAIN CONCRETE

3.1 THE PROBLEM.

* The ultijrate success of the mixture theory for reinforced concrete, discussed
above. hing,. very strongly on the ability of the constitutive model of plain concrete,
used with the theory, to accurately describe the behavior of plain concrete over the
wide range of response that can be expected in practice. Any deficiencies in the plain
concrete model will surely be reflected -- and possibly enhanced -- when the model is

* used in conjunction with the mixture theory to describe reinforced concrete. Clearly.
the accuracy of the mixture theory can never be greater than the accuracy of the
plain concrete model used with it. Because of this, every effort should be made to
develop an accurate model of plain concrete.

• During the past ten years. considerable research has been devoted to
understanding and modeling the constitutive behavior of plain concrete. From this has
come a variety of different constitutive models for plain concrete which provide
reasonably accurate descriptions of plain concrete behavior for stress paths which
generally do not differ greatly from the standard paths followed in the usual
laboratory testing. Largely, due to the lack of available appropriate data, little proof-
testing of the models has been done to examine their predictive capabilities for
complex stress or strain paths that are expected to occur in practice. Many of the
models are limited to the stress range below failure, since they contain no provision
for treating cracking. A few of the models do, however, attempt to treat cracking
and post-cracking behavior as well. Generally speaking, however, the problems of
developing a constitutive model of plain concrete capable of realistically describing the
full spectrum of behavior from pre-cracking to cracking and finally post-cracking
response still remains basically unsolved. The goal of the present research is to
address this need.

3.2 ACCOMPLISHMENTS.

A new constitutive model of plain concrete was developed which appears to have
remarkable capabilities for predicting the nonlinear inelastic behavior of concrete for
stress states below failure (Valanis and Read, 1985; 1986). The model is formulated
on the basis of the endochronic theory of plasticity and, as such, does not require a
yield surface nor the specification of loading or unloading criteria, as in classical
plasticity. It predicts that plastic flow will occur from the onset of loading, a feature

6
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• which makes the model attractive and appropriate for describing the behavior of
concrete, which does not exhibit a well-defined yield point. Basically. the model is
isotropic (when referred to its initial state), rate-independent and satisfies the second
law of thermodynamics (Clausius-Duhem inequality). It realistically portrays the major
features of nonlinear inelastic behavior exhibited by plain concrete, including shear-

* volumetric coupling, effect of hydrostatic pressure on shear response, hardening.
hysteresis and stress-path dependence.

The foregoing model was applied to an extensive set of laboratory data
generated by the University of Colorado, using a true triaxial device. The test

• programs consisted of six different series of stress-controlled tests, each of which was
designed to explore a particular facet of material behavior. Altogether. the response
of concrete to over 45 complex stress paths was investigated. In all cases, the stress
paths were such that no significant macrocracking occurred during the tests.

The model was fit to a very small subset of the data. after which it was proof-
tested by driving it around over 20 complex stress paths to predict the corresponding
deformation histories. None of the data from the complex stress path tests were
used in fitting the model parameters and no optimization techniques were employed.

As shown by Valanis and Read (1985.1986). the proof-tests were remarkably
successful and revealed the powerful predictive capability of this new model. In all
cases, the model captured the essential features of the concrete behavior and exhibited
excellent agreement with the data. For nonlinear, inelastic behavior inside the failure
surface, i.e., where significant macrocracking has not occurred, the endochronic
concrete model appears to provide the most accurate description of concrete behavior
of any of the existing concrete models.

To approach the problem of extending the basic endochronic model to account
for cracking. anisotropy and dilatancy, the constitutive behavior of a brittle elastic
solid was first considered. From this effort, there resulted a new continuous damage

0 theory for brittle solids (Valanis, 1985). which possessed a number of desirable
features not found in other models. In this model, damage (microcracking)
accumulates in a gradual manner from the onset of loading, provided that at least one
of the principal strains is extensional. The model is initially isotropic, but becomes

7



* anisotropic if damage develops in specific directions. Through a clever formulation,
general anisotropy is handled through the use of second order tensors, and thus does
not require the use of fourth-order tensors, as do most such models. It appears that
the model can describe the standard modes of cracking, as well as the so-called
"splitting mode" under uniaxial compression, a mode which is beyond the scope of

* most existing fracture models. Details of the model, together with a number of
applications, are given by Valanis (1985).

Recently. the above approach for describing damage and fracture of solids was
extended by Valanis (1987. 1988) to plastic-damaging solids, with the result that a

• new endochronic-damaging model is now available which possesses all of the desirable
features found in the earlier (no damage) model but can now treat cracking.
anisotropy and dilatancy. The key concept behind the theory is a mapping which
transforms the current, damaged and generally anisotropic state of a material into an
isotropic, undamaged state. The model describes both stiffness degradation and yield

* limit degradation due to developing damage, as well as dilatancy, and contains, as
special cases, several models that are noteworthy, including the classical elastic-
fracturing model. The model has been successfully applied to recent data on the
response of plain concrete to simple tension (Read, 1988) For further details of
the model and its application to plain concrete, see Valanis and Read (1989).

In view of the Air Force's interest in shock loading of defense structures, and
with the goal of eventually introducing strain-rate dependence into the endochronic
concrete model, a comprehensive review of strain rate effects in plain concrete was
conducted (Read, 1985; Hegemier and Read, 1985). In particular, we sought an

* answer to the following question: Does the existing data on strain rate effects in
plain concrete realistically reflect the true rate dependence of this material, or are the
inferred rate effects the result of spurious system effects, inhomogeneous deformation
or poor methods of data interpretation? In view of the importance of strategic
structure response to this study, the review was focussed on the strain rate range
from 10-1 to 102 sec-1 . where almost all of the data comes from drop hammer
devices. From the review, it was concluded that considerable caution should be
exercised in using such data to develop rate-dependent constitutive models. The
responses of test specimens in such devices are complicated by a number of factors,
including inhomogeneous deformation, non-ideal boundary conditions and complex
stress-wave fields. For further details, the works by Read (1985) and Hegemier and
Read (1986) should be consulted.

* See Appendix B.

0, 8 nmm n IIi IinBI i 1



Concrete, as well as rocks and dense soils, when compressed at constant axial
strain rate under conditions of either uniaxial stress or triaxial compression, exhibit a
phenomenon called "strain softening". Materials which exhibit such softening are
characterized by a constitutive response in the axial direction in which the stress rises

* monotonically with strain to a peak, and then decreases with further increases in
strain.

In the past, strain softening has been generally viewed as a true continuum
material property and routinely incorporated into constitutive models. As a result, the
literature abounds with advanced, complex constitutive models for materials such as
concrete, rock and soil which are designed to simulate strain softening. Recently,
however, both numerical and analytical difficulties have surfaced concerning the
solution of certain wave propagation problems in strain softening materials. As
examples, it is noted that strain softening can lead to mesh dependence from the
numerical viewpoint and loss of hyperbolicity from the analytical standpoint.

In view of these difficulties, and because plain concrete is a strain softening
material (at least for pressures below the brittle-ductile transition), an extensive study
of strain softening, including experimental, theoretical and numerical issues, was

* conducted. The results from this study are given in the works by Read and
Hegemier (1984), Hegemier and Read (1984). and Hegemier and Read (1985). In
essence, it was found that without exception the initiation of strain softening
corresponds to the transition of the test specimen from a continuum to a structure
and/or to significant geometrical changes in the specimen's minimum cross-sectional

* area. It was concluded that strain softening, as inferred in the usual manner from
conventional laboratory tests, is not a material property and therefore should not be
incorporated into the usual (local) types of constitutive equations. This conclusion
has been reaffirmed by subsequent investigators.

• During the present reporting period, there has been considerable activity directed
toward developing and applying non-local models of strain softening. Virtually all of
this activity has focussed on the case of softening under tension, and a measure of
success has been achieved. The more difficult case of softening in compression has
received little attention and continues to be an unresolved problem. Further research
is needed to develop a general approach which can deal with softening under both
tensile and compressive loading conditions.

9



Finally, the types of experimental data normally used to develop constitutive
models for plain concrete were critically assessed as part of this study (Hegemier and
Read, 1985). Various issues pertaining to strain softening. strain hardening, failure
states, failure modes and strain rate effects were considered. Particular attention was

* given to the effects of different boundary conditions and different test devices on the
resulting data. Also, the manner of defining failure was explored. It was found that
failure modes are strongly influenced by a number of factors, perhaps the most
important being the test boundary conditions. Considerable scatter in data was found
with respect to failure modes, especially at low confining pressures.

3.3 FUTURE STUDIES.

In order to complete the research undertaken in this task, and to accomplish the
ultimate goal of developing a constitutive model of plain concrete that is capable of

* describing the response of this material to shock loading, including damage and
fracture, the following tasks are recommended in a future effort:

In view of the very encouraging progress made in this study toward
developing a theory for the plasticity and fracture of concrete,
further effort should be undertaken to explore and validate the
theory under more general loading conditions, such as uniaxial
compression and triaxial compression. These cases involve cracking
patterns that are considerably more complex than those which occur
under simple tension, and thus should provide insight for further
model development.

The success of the new endochronic plastic-fracturing model in
describing real physical phenomena depends strongly on the ability
of the damage evolution equation to reflect the underlying
micromechanical damage processes. Additional effort, therefore,
needs to be devoted to setting the damage evolution equation on a
firm micromechanical foundation.

Further investigate the still unresolved question of strain-rate
dependence of concrete, with particular attention on the critical

0 assessment of experimental techniques developed by the defense
community during the past several years.

10
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If the issue of rate-dependence can be resolved, introduce strain-rate
effects into the endochronic plastic fracturing model. Validate
model against appropriate strain-rate data not used in calibrating
the model.

While considerable progress has been made recently in under-
standing "strain softening", there are still many outstanding
questions. Most importantly, there is still no generally accepted
method for taking strain softening into account under general

* loading conditions. This area is in need of immediate attention.

0
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Section 4
PUBLICATIONS

The publications which resulted from the research conducted under this contract
are listed below.

Hageman. L. J.. H. Murakami and G. A. Hegemier (1986). "On Simulating Steel-
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Mechanics of Materials. Vol. 5. 187.

*Hegemier. G. A., and H. E. Read (1984). "Strain Softening" (Discussion), Theoretical
Foundations for Large-Scale Computations for Nonlinear Material Behavior, edited
by S. Nemat-Nasser, R. J. Asaro and G. A. Hegemier. Martinus Nijhoff. Publ.

Hegemier, G. A., H. Murakami and L. J. Hageman (1984). "On Tension Stiffening in
* Reinforced Concrete," Mechanics of Materials, Vol. 4(2). 161.

Hegemier. G. A., and H. E. Read (1985), "On Deformation and Failure of Brittle
Solids: Some Outstanding Issues," Mechanics of Materials, Vol. 4(3), 215.

* Hegemier, G. A., and H. Murakami (1985), "A Nonlinear Theory for Reinforced
Concrete," Proc. Second Symposium on the Interaction of Non-Nuclear Munitions
with Structures. Panama City. FLA.

Hegemier, G. A., and H. Murakami (1986). "On Simulating the Nonlinear Planar
Hysteretic Response of Reinforced Concrete and Concrete Masonry," Third
ASCE/EMD Specialty Conference on Dynamics of Structures, UCLA. Los Angeles,
California.

Hegemier, G. A.. H. Murakami, and K. Sweet. (1988). "Influence of Steel-Concrete
Bond Characteristics on Stiffness Degradation, Ductility, and Failure conditions in
Reinforced Concrete," In preparation.

Murakami. H., and G. A. Hegemier (1986). "On Simulating Steel-Concrete Interaction
in Reinforced Concrete. Part I: Theoretical Development," Mechanics of
Materials, Vol. 5, 171.

Murakami, H., and G. A. Hegemier (1986), "A Nonlinear Dowel Action Model,"
submitted to Intl. J. Solids and Structures.
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* Read, H. E. and G. A. Hegemier (1984). "Strain Softening of Rock, Soil and
Concrete," Mechanics of Materials. Vol. 3, 271.

Read, H. E. (1985). "Strain-Rate Effects in Concrete: A Review of Experimental Data
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* ABSTRACT

This report describes an effort to develop continuum mixture models with
microstructure for reinforced concrete with unidirectional or bidirectional steel
reinforcement layouts. In addition to model construction, analytical and numerical

* examples are presented in an effort to demonstrate the capability of the theory to
simulate stiffness degradation. ductility, and failure conditions. The theory
incorporates progressive concrete cracking, steel-concrete bond slip, and yielding of the
steel.
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SECTION 1

INTRODUCTION

0 This report deals with microstructural mixture models for reinforced concrete
systems with unidirectional and bidirectional steel layouts. Sections 2 - 7 concern the
development of models for 3D reinforced concrete elements and 2D reinforced concrete
panels -- all with unidirectional rebar layouts. These models are examined from the
standpoint of simulation capability in Sections 8-10. Included here are discussions of

* stiffness degradation, ductility, and failure conditions. In Section 11, the modeling
effort is expanded to include rebar layouts which are bidirectional.

The models developed incorporate progressive concrete cracking, steel-concrete
bond slip, and yielding of the reinforcement. The models are nonphenomenological in

* that all model parameters are defined once the properties and geometries of the
material components are defined.

0
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* Section 2

FORMULATION OF THE LINEAR PROBLEM

Consider a reinforced concrete element with a uniaxial. periodic steel layout. At
*O time t in the loading process, let this element consist of a collection of intact

subelements. Let V and BV. respectively, denote the volume and boundary surface of
a typical sub-element. Thus. if crack surfaces penetrate the element, they are
confined to aV.

* For reference, let rectangular Cartesian material coordinates x I, x2, x be selected
with x in the axial direction; Figure 2.1. For notational convenience. ( 1. a = 1.2.
will denote quantities associated with material a with a I denoting steel and
a = 2 denoting concrete. In addition, the notations (). E 8(')/ax. will be employed.
The usual Cartesian indicial notation will be adopted 'in which Ieatin indices range
from I to 3, and repeated indices imply the summation convention unless otherwise
stated. Quantities of the form (-) and ( ) denote dimensional and nondimensional
variables, respectively.

Under the premise of small deformations and linear elastic, isotropic component
* response, the basic governing relations for the components and the component

interfaces are:

(a) Equilibrium equations

o .) . = I on (a) (2.1)jI,J I

where o.. denotes the stress tensor. T!a) represents a body force per unit volume.
and V(a)i is the volume occupied by material a;

(b) Constitutive relations

aa)= C(a) 6 eCa) 2 Ca), Ca) on Ca) (2.2)
ij ij kk *(j

where V(a). #(a) are Lamd's constants, 6 is the Kronecker delta, and eij is the
infinitesimal strain tensor;

A-6
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0 (c) Strain-displacement relations

e I u u , + ) on ; (2.3)

0 (d) Interface continuity conditions

-1) = -(2) , -(1) (1) = -(2)(1) (2.4
1 C o i. J i.J on (A

where 8 denotes the interface between the two constituents and is the unitcosttunt an 0. 1 isteni

outward normal to material 1 on 6. which satisfies v 1
-

(e) Appropriate boundary conditions on BV.

Conditions (a) - (e) define a well-posed boundary value problem. However, a
direct solution of this problem for the stress and deformation fields on an element
domain V is rendered virtually intractable for most cases by the many interfaces 6
and the three-dimensional aspect of the problem. A primary objective of the work to
follow is to alleviate this difficulty by a process of homogenization or smoothing of
the original heterogeneous material in V.

A -F



SSS-DFR-89-10119

* Section 3

HOMOGENIZATION PROCEDURE

3.1 SCALING.

The homogenization process begins with a simple scaling of both dependent and
independent variables. This step is facilitated by the introduction of the following
nondimensional quantities:

x i = xi/A,

u ua) - (a/
I I

* ~(I j a)j W~( ) (3.1)

I W

(a) = (a)

= (XxJ)aA W

where A denotes a reference macro length and E is a reference composite elastic
modulus. Under (3.1), equations (2.1) - (2.4) becgnie

o(a). f a) 0 on (a) (3.2)

a..) = (a, .(a 2,s.. on V~)(3.3)*J ij kk 2 o

e ) = !( .,!").1,,U,., on V(,) (3.4)

u(1) = u(2) , = a.2)(') on 8 (3.5)
1 1 , JI J JIJ

where V(a) = V(a)/A3 and 8 is again the component interface.
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* 3.2 MICROCOORDINATES.

It is expected that the stress and deformation fields will vary significantly with
respect to two basic length scales: (1) a "macro" length typical of the body size or
loading condition; and (2) a "micro" length typical of a "cell" planar dimensions as

* depicted in Figure 2.1. These macro and micro scales will be associated with the
variables X and , respectively. Further, it is expected that these scales will differ by
at least one order of magnitude in most cases. This suggests the use of
multivariable asymptotic techniques, Hegemier, et al (1979). This approach
commences by introducing new independent variables according

* -1

x = ,(E)x , 0(e) * 0 as E 4 0 ,7 7 (3. 6a)

= #(E)x 7, #(e) + I as E 0

where 7y = 2,3 and

B */A (3.6b)

For the present analysis, it will suffice to set

( - . #(e) = 1 . (3.7)

Thus, all field variables f(x.,t) are now functions of the "microcoordinates" x* as well
as the "macrocoordinates" x, = x . i.e., 7

fINx) = F(xi;x;E) (3.8)

Spatial derivatives of a function f(xi) then take the form

f . = F. - 1 F . (3.9)

where ()F. - 8( )/ax. and ( )|, - 8( )/8x t with ( ) - ()/Ox* 1 =f0. For
* notational convenience, the functions f and F will bodi be written as f in the

following.

0
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* 3.3 SYNTHESIZED FIELD EQUATIONS.

The operations (3.8) and (3.9), when applied to all field variables, lead to the
following synthesized governing field equations in nondimensional form:

* a). a). . . f.(a) = o (3.10)

(a) = ..) e ( a )  2 ej ij kk (3.11)

* =) 1 {(u~a) * u .) , (u~a34+ uf~a) (3.12)
ij 2 u jj f . j J'i

u.( 1 ) =u.( 2 ) , .1u.1 af2)V 1 ) B T* on 8 (3.13)

3.4 LOCAL PERIODICITY CONDITION.

An important premise, called the local periodicity condition, is now introduced.
This condition consists of the assumption that local periodicity in the microvariables

* x 7= 2.3. may be invoked for all field variables. This premise allows one to
agalyze a single cell in an effort to determine the distribution of any field variable
with respect to the coordinates x*. A typical such cell is illustrated in Figure 3.1.
The local periodicity premise is s'lggested by the Floquet Theory associated with
linear differential equations with periodic coefficients, the set of relations (3.10) -

* •(3.12) can be reformulated as such a set of differential equations.

The local periodicity condition implies that all field variables f(xk;x*) satisfy
A'A"~ ~ 7' ,

f X* f dx X -;~~e (3.14)
k;2' 3' ) 1k' ^2'x3'

where (x2. 3) and (-x- _x*) denote reflected points on the boundary 8O of a typical
cell with area 0 = A(uA .
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* Now, on the boundary 80, it is evident that 12),, 2) ̂ , Ths
x* - periodicity implies that

7

X f .x;x,E]12)d80g = 0 (3.15)0 Janfi k;X; I

for any field variable f. The property (3.15) will be useful later.

* 3.5 WEIGHTED RESIDUAL PROCEDURE.

In this subsection, a weighted residual procedure is introduced. This procedure
will be subsequently used to eliminate the microcoordinates x*(7 = 2.3) from all field
variables through an averaging operation, and to establish apropriate field equations

• for the resulting averaged fields.

To begin, let # denote the space of all H '-functions f(x :x*) on V with respect
to Xk(k = 1-3) and on 0 with respect to x7* (7 = 2.3) that are 1* -periodic according
to subsection 3.4. Any function u. e with u. . on 8VI . where u. is theI I U I

specified displacement, will be called 'an admissible' trial displacement. Any function
5u. e # with 5u. = 0 on 5V will be called a weighting function or are admissible
variation (of u.). In addition, let m# denote the space of all L -functions h(x ;x*) on VI k I
with respect to xk(k = 1-3) and on 0 with respect to x* (7 = 2.3) that are x*-
periodic. Any function a. e j with a.. =. on 6 VT , Tvhere 1. is the specified
traction, will be called an admissible trial stress. Any function 6o.. e j with 65o.. = J
on 6V will be called a weighting function or an admissible variation (of o.). Vn the
above, it has been tacitly assumed for convenience that the boundary data on 6V is
of the non-mixed type, i.e., that u. is specified on 6V while Y. is specified on 6VT
with 6V = 6V u8VT and 6V naV T = 0 (generafization to the mixed case does not
represent a significant problem

A-13
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* Next, consider the weighted residual R defined by

+IU. - . 11
R 6u (a) ,

+ 6fa{ 9 1"e ijo* - eij (a)dA (a)}dV"A (3 .16)

(u~) _ ud2))ds*jV d{ { (y -iivi auLa)dA(2)dS

I" 1- a= A" a)f

~ ~o.)(a) 6u a) dsJ dV *_, 2) v f v 2 ) )6u 2)d(8oJ dV

where dV = dx dx dx dA(  = dx*dx*; ds* is a differential element of 8 S 8A(1)-
3,3

dS is a differential 'element of 8V; 8 denotes the outer cell boundary; T = .!1)! 1)

on 8; for a given trial displacement u.(e. eia is computed according to (3.1; and
the notation e.(a)(--,) denotes the inverse o? (3.11) which is to be computed given a

* trial stress aQ , i.e.,

eC9(€.) M . (a) _ or (a) ( 6  (3.17a)1 j E (a) , j E (a ) 6; kk7

where

E ' ( a ) (3, . 2a) (a)  (3.17b)
(, 2) (a)  2( ((3.17b)

In (3.16). the integrations with respect to the macrocoordinates are carried out over
the entire domain V while those with respect to the microcoordinates x are
performed over a typical cell.

Now. if R =0 is satisfied for: (1) all admissible 5u!a) which are arbitrary over V
and A(al. and on 8VT and A(a); (2) all admissible 6oirR) which are arbitrary over V

A-14
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* and A(a ). and on 6V and A(a); and (3) all admissible 6W which are arbitrary overU I

V and 8, then the first five integrals must vanish independently and it is evident that
weak solutions of the local field equations have been generated that satisfy the
equilibrium equations (3.10) (first integral), the constitutive relations (3.11) (second
integral), the interface displacement continuity (3.13) (third integral), the specified

* traction on BV (fourth integral), and the traction continuity on 8 (fifth integral). The
kinematic condition (3.12) is satisfied identically since e.. is computed from u. via
(3.12). The last (sixth) integral vanishes if the stresses' are required to be in -a
solution set; otherwise the vanishing of this integral imposes the x*-periodicity
condition on the transverse stresses a.. (ij 1) (note that v(2) 0 on the cell

* boundary 80). i

If R = 0 is satisfied for all admissible 6u. in a subspace of #, and for all
admissible 6c.. in a subspace of j, then the field equations (3.10)- (3.13) are satisfied
in a weighted' residual (approximate) sense.

From (3.16) with R = 0, Gauss' Theorem, and the x*-periodicity condition, one
obtains 7

J J 4 !40!) * 5c !)() - e! (*0)jdx2 dx3Ij Ij ij IJ
It a=1 A(a)

S1 f [T!(662) - 661)) . 6T![u[j 2) - uMl))]ds*dxldx2 dx3

* i 2.f~Lf "A If(a)I
A

A-75
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2fI+ {fi 6u~a)dxdx*}dS (3.18)

where

6 !{6uj + 6u. + . 6u. (3.19)

Equation (3.18) is similar to Reissner's mixed variational principle (1984.1986) in
which variations of the stresses are considered along with variations of the
displacements. The terms of (3.17) involving 6a.!a) and 6T!. are constraint conditions
that reflect satisfaction of the material consitutive rel'ations and the interface
displacement continuity conditions, respectively. Consequently. (3.18) can be envisaged
as the principle of virtual work for the synthesized fields with constraint conditions;
here 6O5i and 6T! play the role of Lagrangian multipliers. In what follows, only
variations in the transverse stresses o4(i.j$1.1) will be considered, i.e., 6 11  0.

3.6 TRIAL FUNCTIONS.

As indicated in the previous subsection, the weighted residual procedure (3.18)
will be subsequently employed to eliminate the x*-dependence (i.e., the dependence on
the microcoordinates) from all field variables, an! to establish field equations for the
x*-averaged (i.e.. cell-averaged) fields. To accomplish this task, however, appropriate
trial functions u! = a c0 and a.i(a ) . f must be postulated or constructed. In
particular, it will &e necessary to exhibit an explicit x*-dependence of all displacements
u!a) and the transverse stress components a.!a) (i.,j 0 1,1).

1 i

The required x*-dependence of the displacements and the transverse stresses can
be obtained by applilation of an asymptotic procedure developed by Hegemier (1974)
and Murakami, Maewal and Hegemier (1981) (see Murakami and Hegemier (1986) for
application to a similar problem). This procedure is as follows: The premise that

A-%
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* the ratio of micro-to-macrodimensions is small. e << 1. and the form of the
synthesized equations (3.10) - (3.17). suggest an expansion of the dependent variables
in the asymptotic series

{ U 0 i j ( a ) O P., : ' n, (

*' {' u..) = f I (Uie(n)Oija(n)) xk;x7) (3.20)
n=O

If (3.20) is substituted into (3.10) - (3.13). and the coefficients of different
* powers of e are equated to zero in the usual manner, a sequence of boundary value

problems (called microboundary value problems or MBVP's) are defined on the cell.
In general, solution of this sequence is difficult. However, for those cases where a
circular cylinder approximation of the cell boundary 60 is appropriate (i.e.. where the
cell aspect ratio is approximately unity), consideration of this sequence to O(e)

* motivates the following form for the trial fields:

(a) Displacement trial functions
u(a) (a)(r)cos

u1 (xk; x7; E) =U (xk) + E1 1 x 1N) 9 L c

+ E (ixk)g9(i) (r)sinO + 0Cf2), (3.21a)

where

2 3, (3.21b)

(1) ( r( 9D (2) (r)=-1y(r. (3.21c)g(1 (r) nfl) n (2 rr -

=* = r coO, x* r sine (3.21d)

and where n(a) denote volume fractions, i.e., n(a) = (a)/A where A A(')UA (2) = a
* is the total cell area.

(b) Transverse stress trial functions

A-17
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22 (a) 22 (a) 2(2) os29

033 (Xk;'*;') '3t)*2 22 (xk) cos20

023 23 *0k

cos20J sin2G]

33 ~)j -o 2 3 (xk) sin2el

*sin2G. . 0 .

.3cosO s i nO1

*+ P2 Xkjg (a)(r) cosa + f p (a)(r) 3sinOj 0(E2) ; (3.22a)

[sinO L cosa.

o31 (a) 1 .( a s in2P
r [(2)

(Xk;X;;'= : j(Xk) + 2 12 (xk)
a [12J [r12J cos2eJ

cos20l rsinOG

+ t(2) eP 1  (a)(r) + O(e2). (3.22b)

.-s i n2 .J LCose.
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* SECTION 4

DEVELOPMENT OF 3D MIXTURE MODEL FOR R/C

Following substitution of the trial fields (3.21) and (3.22) into the variational
* principle (3.18), integration over x*, and appropriate integrations by parts, one obtains

the Euler-Lagrange equations of the variational principle in the form:

(a) Mixture Equilibrium

n (a),,(aa) ()a41 P. n(a)fa) = (i =1-3) (4. 1a)

where

=-a .. dx-dx* (4. 1b)

A(a)

P B 1 T~ds* = ds* .(4. 1c)

"8 8

* In (4.1a), .!aa) is a cell-averaged stress tensor and P. represents an effective
interaction body force due to the transfer of the stress vector across the interface 8.
For the circular cylinders approximation, A =r.

(b) Mixture Equilibrium - stress moments

o(la) _ i(2a) -'1 [t(2 ) + 2t 2 )) = 0 , (4.2a)22 22 2n(1) L22 33

(1a) - r(2a) 1 ( t(2) 2t() 0,42b
S33 33 2 (1) 22 33 O (

A-19
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(la) - (2a) 1 t( 2 ) = 0 (4. 2c)23 23 2n (1) 23

o(1a) -a (2a) 1 t(2 ) = 0 (4. 2d)
* 31 .31 n () 31

(la) o (2a) 1  t (_2 ) = (4.2e)
12 12 n(1) 12 =

* (c) Constitutive Relations - transverse stress averages

Xr .2 (a (aa) (a) (aa) = U (a +1 a) .3a+
0 O2 a2 33 -2,2 1 ,2 (aU)

X 2A (aa) - o(aa) = u(a) (a"u() 1 (4 3b)
S2 J - 2  22 3,3 j 2 j 1,1 (a) 3'4

• [7 1 x2 a L n~) U =  -)+

(a 23-' 2,3 3,2 n(a=r(a (),U( ) +2 2 (4.3c)

1 o(aa) U(a) (,) U- 91 (4.3d)
2a)( 31)3,1 1,3 n(a)

-- 1 . (,) u(,,)+ U(a) 1' (4.3e)

# (a) 12 1,2 2,1 n(a) 1 (4.3e)

In the derivation of (4.3), use was made of the equality a aa) r!(a) for (ij) s
(1.1). In addition, the parameter I above is defined by

- 4/(X + ap). (4.3f)

* (d) Constitutive Relations - transverse stress moments

t(2) = _ (4.4a)22 (2) '3
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33 =- (2) 2 3

t (X + = 2(X + a) (4.4c)
23 (- (2) 2+ - (2) 2

t(2)  g (4.4d)
12 = - (2) 1

t (2) L_2 _2 ) 1 (4.4e)

(e) Constitutive Relations - Interaction terms

P1=P( (2) U u(1))(.a
P 1 = (1) 1 E2 (45a

SP 2 =P( 2 ) (2 -242 (4. 5b)

[) ( 2) _ U(3 ) .c
P 3 0 (3) 3f2 3 4'c

where
2

*-p--- (h (a) /,A(a)) , (4.5d)
C1=1

2

Pl)= 0-1 - h ( ) (X 3M) (a)  (4.Se)
a=1

and where

h(l) =1 h(2),-1 2 + n ( 2) +(') .n()(4.f)
4 n4(2) n -2) 4

A-21
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(f) Constitutive Relations - Axial stresses

a (a) (X 2a)(a)U a)((aa r ( aa).(4.6)11 f 1,2 22 3

(g) Boundary Conditions

The appropriate boundary conditions for (4.1a) are

either 5U.( a) = 0 or .ap) = n(a),,.aaa),v. (4.7a),I jI j

on 6V, where

y(ap) yi dx2dx* 1JJdx . (4.7b)

(a) A(a)

The relations (4.1a), (4.2a-e), (4.3a-e). (4.4a-e), (4.5a-c), (4.6). and (4.7a)
constitute a complete continuum mixture model for the case of fully three-dimensional
fields.

A-22
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* SECTION 5

DEVELOPMENT OF 2D MIXTURE MODEL FOR R/C PANELS

In this section, the 3D mixture model of Section 4 is specialized for the case of
* plane stress. The resulting equations constitute a model for the in-plane deformation

of reinforced concrete panels. The (material) reference coordinate system associated
with such a panel is depicterd in Figure 5.1.

5.1 PLANE STRESS CONSTRAINTS.

The following constraints are deemed to be appropriate for the planar
deformation of a reinforced concrete panel:

or(aa) or,(aa) = r(aa) 0. (5. 1a)
* a33 = 32 = 31

(, 0 , (5.b)

Equations (5.1a) and (4.2b-d) furnish

t ( 2 ) = t ( 2 )  0 (5.2a)
31 32

t (2) = 2t(2) (5. 2b)
22 33

The relations (5.2), when combined with (4.4) yield

1 2 0 (S.3a)

(2), (S. 3b)

a(13,) - a (2a) t t(2)/nC(1) (5. 3c)
22 22 22

5.2 CONSTITUTIVE RELATIONS.

Under the constraint (5.1a), and upon noting that
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03

x x2

0

0

Figure 5.1. Material coordinate system.
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4 ( + a) E 2X# vE E
X+2 -1 - V2 ' ) + 2j- 1- V2 'a 2(1 + v) (5.4)

* one obtains from (4.3a). (4.3e), and (4.6)

a = L 22 (a) U21  + n(a) 2 ua] (5.5a)

22 - .2 [ , 2,z n(v) 2J, (5.5)

The expressions (5.5a-c) can be written entirely in terms of U('2 ) and U a) as follows.
First, the quantity 9 can be determined in terms of U ( ), an ? U(G by 2substitution

(5.5a,c) into (5.3c) and use of (4.4a) and (5.3b); the result of this operation is

2 [1 1,2 2,2 *

* 1: 1r (1) 1_ E_ 12)(2) 2EE ( (u7b)E_ 1(2)_2(U(.7a)

where

7- (1) +1 [E (2)2E()2) (S7b
n (1) n (2 _ 2 n (1) n(2)[ (1 ,v (2)) (3 .4v()

Next, substitution of (5.5b) and (4.4d) into (4.2e) yields

=- 12U 1,2 2,1) + 72s 1,2 2,1) (5." 3
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* where

-1 E E ( 1 n (S .8b)v(s) 2nC'(1) + ,(1)) 2nC1)n(2)(1 (21) (5.Bb)

Finally, upon substitution of (5.7a) and (5.8a) into (5.5a-c), one obtains the desired
constitutive relations; these can be expressed in matrix form as

{o} = [CJ{e} (5.9a)

where

{o} --{n(1)1a) n (2) (2a) n (1) (1) ( n2)(2a) n (1) (1a) n (2) a(2a))T,

{e}- u , U(2), u(1),u (2) , u (1) 2) * u(2) T
1,1' U1,1 2,2 2,2 1,2 2,1' 1,2

[C] - [Ckl] , k,l = 1 to 6 with Ckl = Cik and

Ckl = 0 for k = 5,6 and I = 1 to 4; (5.9b)

and where

C11 = (n() - 7V' (1) ( D(1) , 12= 71 (1) (2) D()D 2  = (1) (2) C 43 ,

C22= (n(2) - 7V (2)2D(2))D(2) ( = 13 n (l) - 7 D(1) V (1) D (1 )

C1 4 = 7D(1)D(2) t, = (1) (1)C34 C23 =7D(1)D(2)V(2) = (2)C34

C24 = (n(2) _ '( 2))D(2),V(2) , 4

C5 5 = n() (1 )  1 - c6  = n (2) (2)[1 C "n- n(2)
55 (s6(1) J6P(2

C56 " 7 (s)#(1) (2) ,C 66 = n(2)#(2)f1 - 7()n(2) (5.9c)
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In the above,

D (a) ECU) (a) EC(a) (.

* V(a) 2(1.L,()

In addition to the material constitutive equations (5.9a). the interaction
"constitutive relations" are. from (4.5a~b):

(U (2) _ uf'1) (U (2) _U(1)]
P1  2 P,)~ P 2  = (2) 2(5.10a)

* where can be expressed in terms of E~z' by

2 h () j , V)(a) P-1  2 ()( +. v)(') 3 -0)0

(1)= ECU) (2) = L4E(a)

(5.10b)

5.3 EQUILIBRIUM EQUATIONS.

* The appropriate equilibrium equations for the 2D model can be obtained directly
from (4.1a) together with the plane stress condition (5.1a); this yields

n(a)(Aaa) + -)a+1 P+r(a)f(a)=
P7,P 7 7

where P,7 = 1,2

5.4 BOUNDARY CONDITIONS.

The theory is completed by specification of the boundary conditions on OV; these
are, from (4.7) given by

either 6U (a) 0 or n (a),, (aa)~ ya) (5.12)
P 07 v7 P)

where, again, ,O.y 1.2.
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* 5.5 PRINCIPLE OF VIRTUAL WORK.

For purposes of numerical computations, it is instructive to note the form of the
principle of virtual work for the plane stress problem under discussion. This form is

J J T{a} T{e} - {F}T 6{U}]dV = {T}T {U}dS (5.13)

, -,8V T

* where

fu U) f1) ,uf2) ,U(1),U(2)}T

{F} {- + n(l)f}1), P1  n(2)f 2), - p2  n(1)f (1 ), P2 n(2)f(2) T

f - 1 '1 1 2

{jy(lp), j( 2 p) , y(lp) y(pT

* and where {e}, {o} are given by (5.9b).

5.6 SUMMARY OF BASIC EQUATIONS IN MATERIAL COORDINATES.

The basic equations that govern the linear planar response of a R/C panel with
* a unidirectional steel layout are summarized below. Use of these equations require

that the reference coordinates be material coordinates, i.e., that the x -axis be aligned
with the steel as depicted in Figure 5.1.

(a) Equilibrium Equations

o ( ap) + (-1) 1P , f~aP) = 0 (5.14)
76,7 6

where a = 1,2; 6,7 = 1,2.

(b) Material Constitutive Relations

o0p) = n ,(a) D (a) u ( ) ( ) ru ) (U)(a1 ( )na S
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(ap) n (a)A(a)U(a) u(') 1. 1°12 -"[1,2 2,1 n (-a)

U 2(Up ) () ()()
2, 1 2 . n(a (j

22 2,2 n (a) ,

(c) Interactive constitutive Relations for P6

= (U~ (2) _ U(1)] (5.16)

where 6 = 1,2: no sum on 6.

(d) Interaction Constitutive Relations for S6

7

S= 7D (2)(u + W.~1, )(2) _-Y '(1)( 2 [U +VU~j

1= 7*( 2) lU1 2 +U 2 1)(2) - '.Y*()(U,. [ uj1,) + (51)

• (e) Parameters

D(a) = E(a)/(1 - .2) (a) (a)= E(a)/2(l ) (a)

2 2
* -1 ) = 1 > h (") /h -1 , )(a) (a) /,,(a)

a=1 a=1

4 4n' (2 n ' ' (2) n o

- D(1 )  D(2 )  4(2)
(1) +n ( n(2) In(1)(3 4A2)JJ

"*-1 1 ( (2) 1 , n(1)l

7 = (1) n (2) /n (1) J(.18)
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(f) Partial Stresses, body forces

a (ap) n 6a a)f(p nf 6  (5a19"67 67 ,

where a = 1,2; 6,7 = 1,2.

(g) Alternate Form of Material Constitutive Relations

{a} = ICJ{e} (5.20)

where {o}. {e}. and ICI are defined by (5.9).

5.7 BASIC EQUATIONS IN GENERAL COORDINATES.

For some applications, it may prove convenient to utilize reference coordinates
which are rotated with respect to the material coordinates as shown in Figure 5.2.
The basic equations can be rewritten when referenced to such coordinates as follows:

• Let x ,x 2 denote the material coordinates and let 2 be defined according to

xI = xI cos# x2 sin#

x 2 = XI sino + 2coso , (5.21)

x3 = x3

Then, it is easily demonstrated that the stress, strain components in the new
* coordinate system are given by

s1 1 = cos2s + sin s2 2 - 2 sin# cos# s12

* s22 = sin 2 # sil Cos2 . 2 sin# cos# s12

=~~~ cos 2) s(.2s

S12 = Lcos'tt- sin'tJs 12 + sin# cos0s 11 - s 22J , (5.22a)
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where s76 represents (a 6 )(aa) or (e76)(a); the latter are given by

2e (,U (6,7 = 1,2). (5.22b)
76 7,6 L 6 (6,7

In addition, it can be shown that

t = t 1 COS#t t 2 sinl ,

5 .(5.22c)
t2 =t 1 sin. t2 cosO

where t represents S . U (a) f (a) or P
7 77 7 7

Substitution of (5.22a) - (5.22c) into the basic relations of subsection 5.6, and
with use of (5.21) to evaluate derivatives with respect to x1 ,x2 in terms of derivativesAA

with respect to xIx 2, one obtains

* (a) Equilibrium Equations

^(ap) (_)" *("p) = (76,7 6 f - (5,23)

* where a = 1,2 and 6.7 = 1,2.

(b) Material Constitutive Relations

{} = (C {e} (5.24a)

where

[C] = IT[C](T]T ; (5.24b)
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cos20 0 si 2 0 2sinocoso 0

0 cos2 0 si 2 0 2sinocoso

n2 0 Cos2 0 -2sinocoso 0

* [T] 0 sin 2 0 cos20 0 -2sinocoso

-sinocoso 0 sinocost o cos 2 -sin 2  0

0 -sinocoso 0 sinocoso 0 cos 2-sin 2

(5.24c)

The 6x6 matrix IC] is defined by (5.9b.c).

(c) Interaction Terms

* a = ~ 11(5f 2) _ 6(l)) -~1 ( 2) - 1)

(5.25a)

2 22 2 u2 + P21Lu 1

where

Pl, -= P (1) Cos2  0 + 2) sin2 0

P2 2  P (2)cos 2  P( 1)sin 2#

P12 = - P21 0 (P~l) - P(2))sincos
o. (5.25b)
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* SECTION 6

MODIFICATION FOR INTERFACE SLIP

The 2D and 3D models of the previous sections are subject to the restriction of
* a perfect steel-concrete interface bond. This restriction is removed in this section.

Virtually all rebar in use today in the United States is deformed. Consequently.
the geometry of the actual steel-concrete interface is complex. For modeling purposes.
it is conventional to replace this surface by an artificial mean surface. In the present

• analysis. this is the surface in dimensional form and 8 in nondimensional form.

Given the mean surface 8, the actual steel-concrete interaction is approximated
by specifying an interface constitutive law between the traction T! on 8 and the
relative slip [u.] u!2) - u 1 ) across 8. This law must reflect local' damage to the

* concrete in the form of crushing and microcracking.

For most practical problems, it is sufficient to incorporate axial slip only. The
constitutive law associated with such slip can be expressed generally in the form

* T1 = F((ul]) (6.1)

where F is a functional of the entire slip history. A subset of (6.1) which has been
previously used by a number of researchers consists of a slip initiation criterion and a
slip rule; these are similar to the yield criterion and flow rule of incremental plasticity
theory. Application of incremental plasticity theory to slip phenomena has been
suggested by Drucker and Prager (1952). and employed by Seguchi et al. (1974),
Bazant and Gambarova (1980). and Bazant and Tsubaki (1980).

• With little loss of generality, one may assume that the slip is axisymmetric; see
Murakami and Hegemier (1986). For axisymmetric axial slip, and an incremental slip
law. the phenomena of "slip" may be incorporated into the previously derived 2D and
3D models by replacing the constitutive relation for P1 in all equations with a relation
of the form
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K K (1) 2) -f))(6.2)

where ( ) B 8()/at, t denotes (nondimensional) "bookkeeping" time, and K(1) is a
* tangent modulus which may depend on the field variables.

As an example, the following slip law has been frequently employed for cases in
which reversed slip does not occur:

* = () -(1)] if 1p11 < p(r

(6.3a)
P (cr sgn(0(2 ) 0 (1)) if 1p11 = (pr

In the above,

P (cr) = 2fn( ) a(cr)/e (6.3b)

where a(r) > 0 is the (idealized) local critical bond stress. The law (6.3a)
corresponds to a local rigid-plastic bond law of the form

* [j] = 0 if IT*11 <Go
(6.3c)

[u1] 0, T*1 = o(cr)sgn[uj] if IT* = (cr)

where, again, lul l = u2 ) -_ 1 represents the local interface slip across 8 in the
axial direction.

It should be recalled at this point that the quantitites lu:] and JU.] measure
different phenomena. The former on 8 means local slip across 8. The latter (see

* (3.21a)) is a measure of the difference between the average steel and concrete
displacements over the cell. Consequently, JU] includes both elastic deformation and
slip; the quantity P(1) is a measure of this elastic deformation.
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* SECTION 7

MODIFICATION FOR REBAR YIELD

When rebar yield occurs, the constitutive relations (5.9a) must be revised. If
* incremental plasticity is utilized to describe the rebar response, then (5.9a) must be

replaced by an incremental relation of the form

{ }- [DJ{ } (7.1)

The matrix [D] represents a tangent modulus matrix whose coefficients may depend
on the plastic component of {e}.
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* SECTION 8

BASIC EQUATIONS FOR UNIAXIAL DEFORMATION

A problem of considerable importance concerns the simulated behavior of a R/C
• panel when the latter is subjected to uniaxial deformation. The relevance of this

problem stems from the ability to conduct laboratory experiments on R/C panels
under uniaxial deformation and hence to validate the developed model by comparison
of simulated and measured response.

* The uniaxial problem is depicted in Fig 8.1. The panel deformation is
A

constrained to the x -direction. The rebar layout makes an angle 0 with this
direction. The governing equaions for the R/C panel are obtained from (5.23),
(5.24a) with C, C replaced by D,D; and (5.25a) with P(1) replaced by K(1) . The
appropriate constraints are

U() 2 0 , a = 1,2 (8.1)

Under (8.1). the relevant governing equations reduce to

(a) Equilibrium

^(1p) + =0,
11,1 1

^(2p) _ o 0 (8.2)
°11,1 "

where ( ) 1 d( )/dx1

(b) Interaction

I1 =  ^l -1("(2

1 1 1 (8.3)

P11 = K(1) cos2 + 2) s i n2
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Figure 8.1. Uniaxial problem.
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(c) Constitutive

a1 1  = 1 1 1,1 + 1 2 1,

(8.4)

or 2p) D U(1) + D U(2)
11p = 12 1,1 22 1,1

The equations (8.2) - (8.4) are employed in detailed studies of simulation
response characteristics in the following two sections.
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* SECTION 9

STIFFNESS DEGRADATION, DUCTILITY, FAILURE;
UNIAXIAL DEFORMATION IN DIRECTION OF STEEL (# = 0)

* In this section, the nonlinear response of a R/C panel is examined in detail for
the case of monotonic uniaxial deformation and for 0 = 0. The latter condition
implies that the steel is aligned with the direction of deformation; see Fig 8.1. Using
an elastic-brittle fracture model for the concrete, an elastic plastic model for the steel,
and an elastic-perfectly plastic description of the steel-concrete interface, response

• characteristics are examined that relate to global stiffness degradation of the R/C
panel under extension, ductility of the R/C panel, and failure conditions. The
associated analysis incorporates progressive concrete cracking, steel-concrete slip, and
yielding of the rebar. Of particular interest is the influence of bond strength and
concrete cracking on the overall panel response.

9.1 FORMULATION OF THE PROBLEM.

The formulation begins by considering an initially unloaded R/C panel with two
starting cracks located at the panel termini as depicted in Fig. 9.1. The initial crack

* spacing is 2f. The panel loading condition corresponds to the following boundary
conditions:

(1) = ao (2oa) = 0 at xI  P .

- a.(2a) =0 a

00() - -(a =0 at I  -~ (9.1
1 0 ' -11 1

where u > 0. The notation () above and in what follows indicates that the
* quantities are dimensional.

Due to the problem symmetry, one need only consider half the panel as
indicated in Fig. 9.2. Upon shifting the xI-axis as shown, the appropriate boundary
conditions are
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* Figure 9.1. Initially unloaded RIC panel.
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0z • .. .... ..... ...

............ ....

Figiure 9.2. Partitioned subdomans on the interval 0 x I

A-42

0 -



* SSS-DFR-89-10119

) -(2a) 0 -at =0
1 o l

(9.2)

j(1) ..~( 2) = t Q
1 1 = 0 at x

Given the boundary conditions (9.2), the governing equations (8.2) - (8.4) must
be solved. Since the tangent moduli 111 and 6 k1 (k.P. = 1.2) depend on the field
variables a) when bond slip and rebar yielding occur, the solution for a particular
loading history u (t) must be, in general, obtained numerically. However, when u 0 (t)
is monotonically increasing, an analytical' solution can be constructed. For this
purpose, the domain x E(0P-) must be partitioned into appropriate subdomains. The
vast majority of the desired information concerning response characteristics can be
obtained by consideration of three such domains as follows (see Fig.9.2):

Region 1: Plastic debonded. In this interval the steel is plastic and the
steel-concrete interface is debonded.

Region II: Elastic debonded. In this interval the steel is elastic but the
* steel-concrete interface is debonded.

Region II: Elastic bonded. - The steel is elastic and the interface is
bonded in this interval.

-* Let us now assume that (1) the steel is elastoplastic with linear workhardening,
Fig. 9.3; (2) the concrete is elastic-brittle fracture; and (3) the interface bond is rigid-
perfectly plastic, Fig. 9.4. Further, in an attempt to simplify the analysis with little
loss of pertinent information for # = 0, it will be assumed that 12 0 in (8.4).
Under these conditions, the basic equations for each region are:

Region I (0 < x1 < xP)

=(p0 -- (2p)

11,1 (cr) 11,0

* (9.3)

O(1p) = n(1)f U(1) (2p) = (2)t(2)i(2)
11 (p) 1,1' o11 n 1,1
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car E

01

Figure 9.3. Rebar constitutive relation.

P

PC r

* Figure 9.4. Bond-slip relation.
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where P(cr)' E and E(2) are constants;

Region II (x p < xl < xS)

(p) + 0, a'(2p)

(c cr) -I,1-, 
e(cr)

(9.4)- (Ip) = (1) t(1) 0(1) (2p) = (2) (2) (2)(94

11 1,1 or n1

where E(1) is a constant.

Region III (x < xI < 0)

0" 1 + (2) _ U(f)] =0

a-(2p) - rUj( 2) - UM =011,1 (1 1 i)
* (9.5)

111,

-(2p) =(2)(2)U(2)o 11 1,1

9.2 SOLUTION FOR FIELD VARIABLES.

The solution of the governing differential equations (9.3) - (9.5) is easily
obtained for each region. These solutions can then be pieced together at the region
endpoints by imposing continuity of both displacements U a ) and axial stresses o p).

Finally, the solution is completed by satisfaction of theI boundary conditions 16.2).
The result is as follows:

* Region I

a (18) = a - (x
11 () - n (1) X
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e(1) e o_(rx)e(o)- n()E X

(P)

-(2a (r)
or11 (2 (9.6

e(2)= ° (rx')
11 ( (2)E(2) X

n()

(p) -Xrp)l. -n (Ox o) -

Region II

* ~(la)~ rx~

=) () " ( )1

* (9.7)

-(2a) -
11 n (2)

(2) a(rx) x
11 n n(2)E(2)

* Region III

o(la) E(M) o U (rx)X(s) Em) (o) cosh r1- x)
11 n ( 0)() () ) (1coshpP 1 X (s))

0
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(2a) E Fm coshR(1, )
-11 (2)(1) (o) ( x) (s) E(1) () coshp- x(s))

(9.8)0 Eu
() E (m) a(n ( cosh .(1 -x
11 n (2 )E( 2 )E(1) (rx) (s) - (1) n()E()cosh P- 1 - (s))

(2~) E..(m)!LaL2(0)...M. - coshPPL(l

n(2t()E() rx) ( ) (1) a~ ~l cosh ( P -( ()]

In the above, the following variables have been used:

-2n (1) a b)

-(rx)

-(0) E ( m) = n(1)0) - n

P(p_) 2  Ke2 /E(m) , E = plastic modulus

K? r(2ij 2  8 (2) n(1)]] (9.10)=( 2
_[{2 n n(2)

n (2) A(2)j

Further, the parameter (S) is obtained by solution of the transcendental relation

E (s)
(s) .. _ 1 (9.11)

(S) + (Pt)tanh[Pqt(1 - x())]- (rx)
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* Overall Displacement.

In addition to stress and strain fields in each region, one can solve for the
associated displacements U Of particular interest is the displacement u( )  -

0(1)(0) which is given by

S(r)X(s) - E(1) (€) ]- ' (0)() - X)

u (0) = E) n (2) E (2) E (1)

(9.12)

or(rx) -'~2 - 2~ a -0 rx -

2n(s)E(1) (s) W(p) 2n~~p (o)X(p)

where

S(o) E M

(9.13)

a = Rebar initial yield stress.cy)-

9.3 FRACTURE CRITERION AND SEQUENCE.

The developed mixture model of reinforced concrete can simulate the cell-

averaged fields f(aa)(xk) for each material. The model can also be used to estimate

the local fields f(a)(xk:x7 ;e) within each material. Consequently, once an appropriate

fracture criterion has been supplied, then one can proceed to examine a variety of

possible fracture modes. A subset of such modes include primary (i.e.. through)

cracks, secondary (non-through) cracks, termini "cone" cracks, and axial splitting

cracks. Although all such fracture modes are of interest, the present study will focus

on the influence of primary cracks on the overall response characteristics of reinforced

concrete.
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An elementary, yet useful, criterion for the initiation of a primary crack can be
postulated as follows:

ma ;(2a) = fcC) (.4

where flc) measures the "tensile strength" of the concrete.

Examination of the stress field a (2a) in each of the foregoing regions reveals11 - (2a)
that the maximum average axial stress in the concrete, max a ,, occurs atx =

Consequently in the absence of imposed statistical variations of f(Ct with location, the

first new crack (i.e., the first new crack system) will consist of a single crack located

at the mid-point between the two initial termini cracks. The value of the applied

0 stress o,, when this first primary crack initiates is obtained from solving (9.8) with
-(2a) - f(c) and x = 1 together with (9.11). Using this value of a(o) the

11 t
corresponding displacement u(0) is obtained from (9.12). Immediately after fracture,
the specimen suffers a stress drop at the same value of displacement u (o) The new

0 applied stress o) corresponding to this drop is obtained by replacing t by L/2 in

(9.12) and (9.11). It is noted that this leads to jumps in o'(rx) and x ($) i.e.,

additional slip occurs during the fracture process.

* Following the formation of the first new crack, the R/C element consists of two

subelements, each of which is geometrically identical to the original element with one

exception: The subelement length (or crack spacing) is now E. rather than 2L Each

subelement is now extended monotonically from the value of the displacement

* corresponding to the initiation of the first fracture. The value of the applied stress

o (o) at a given displacement for each subelement is given by (9.12), (9.11) with L

replaced by L/2. The value of oo ) corresponding to the initiation of a primary crack
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* within each subelement is obtained from (9.8), (9.11) with x = 1. 9. replaced by P_/2

and °1(2a) = f(c). The new applied stress o corresponding to the stress drop

subsequent to fracture is obtained by replacing Q- by P_/4 in (9.12) and (9.11).

* Following the formation of the primary cracks in the above subelements, the R/C

element consists of four subelements, each of which is geometrically identical to the

original element except that the subelement length is now P/2 rather than L Each

subelement is now extended monotonically from the value of the displacement

* corresponding to the initiation of the second crack system, and the entire process is

repeated.

The foregoing algorithm leads to a crack sequence as depicted in Fig. 9.5. A
tical crrespnding stress-strain curve is depicted in Fig. 9.6; here a(
n114 (la)(0) represents the overall applied stress based on the entire specimen cross-
section and e,, = lu(o)/(P./N)l is the overall strain (2t = original specimen length, N
= number of subelements).

9.4 STIFFNESS DEGRADATION.

With the aid of the crack evolution algorithm described in subsection 9.3,
stiffness degradation during monotonic extension of a R/C specimen was examined in
detail for the case # = 0, i.e., when the direction of loading was aligned with the
rebar. The "stiffness" discussed refers to either the tangent or secant modulus
associated with the overall stress (ao )) versus the overall strain e (e); see subsection
9.3.

9.4.1 Influence of Bond Strength.

Bond strength was found to have a major influence on stiffness degradation.
This influence can be observed in Fig. 9.7 which exhibits predicted relative tangent
stiffness versus global strain for various values of steel-concrete bond stren th ranging
from 200 psi to a. In this example, the steel volume fraction n6 ) = 0.01
(1 percent), the concrete cover r(2)/t = 0.10, the concrete tensile strength f(c=

t
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* 400 psi, and the rebar hardening characteristics are given by (Or(s) 0"(s))I
(s) =0.33;

the latter is perhaps typical of grade 60 rebar. f y y

The two extreme cases in Fig. 9.7 correspond to a bond strength of * and a
bond strength of 200 psi (strengths in the range 600 - 800 psi are considered typical

* of many practical situations). In the former, stiffness degrades by cracking only i.e.,
in the absence of slip. In the latter, stiffness degradation is due to slip only.
Intermediate cases involve both slip and cracking. It is evident that the rate of
stiffness degradation increases rapidly with decreasing bond strength. i.e.. increasing
slip. It is also evident that tangent stiffness computed in the absence of slip (perfect

* steel-concrete interface bond) represents an upper bound.

9.4.2 Influence of Steel Volume Fraction.

The influence of steel volume fraction on stiffness degradation is seen by an
* examination of the 200 psi bond strength example in Figure 9.7 where stiffness

degradation is influenced by slip only. The results, for steel volume fractions ranging
from 2 to 0.1 percent, are given in Figure 9.8. The rate of stiffness degradation is
shown o be greater for smaller steel volume fractions.

For cases involving both slip and cracking, the same trends are to be found
(i.e., stiffness degradation occurs more rapidly for smaller steel volume fractions). It
should be noted that the sharp decrease in overall tangent stiffness for steel volume
fractions of 0.25 and 0.1 percent in Figure 9.8 is due to the rebar undergoing plastic
deformation.

9.5 DUCTILITY AND FAILURE.

The developed mixture model of reinforced concrete provides stress and strain
fields for each material component. Consequently, if the rebar failure condition is
specified, then the mixture model can be applied to study the influence of various
parameters such as bond strength, steel volume, concrete tensile strength, etc., on the
overall ductility of the composite. Such a parametric study was conducted. The
results, which appear to be entirely new, are presented below.

A
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* 9.5.1 Definition of Ductility.

For purposes of this study. a ductility measure 9 shall be defined according to

= ef/ef s )  (9.15)
0f

where e s) denotes the failure strain of the rebar alone, and ef is the overall failure
strain ol the reinforced concrete composite. Consequently. CZ- 1 for the rebar alone
while !2 < 1 for the composite.

• It is noted that, for most practical situations, the strain field in the steel will be
highly nonuniform. An example is depicted in Fig. 9.9. Consequently, @ can be
expected to be considerably less than unity for most cases of interest.

9.5.2 Influence of Bond Strength.

Bond strength exerts a major influence on overall specimen ductility. This
influence is exemplified in Figure 9.10 for a range of steel percentages. The concrete
tensile strength in this example is sufficiently high to preclude concrete cracking prior
to failure of thc rebar. As can be observed, the ductility reduces sharply from 1.0 as

* the bond strength is increased from zero. For bond strengths in excess of 600 psi,
the ductility is generally less than 0.1 for a range of practical steel percentages -- in
the absence of cracking.

9.5.3 Influence of Concrete Tensile Strength.

Concrete cracking -- or concrete tensile strength -- also plays a major role in
overall specimen ductility. Figures 9.11 - 9.14 exhibit the influence of concrete
cracking for a range of steel percentages. It is evident that the effect of progressive
cracking is to dramatically increase the overall ductility. Cases where cracking occurs

* are indicated by the curves which show sudden changes in 9.. A comparison of
cases reveals that ductility in general increases as the concrete tensile strength
decreases.

9.5.41nfluence of Rebar Strain Hardening.

The rebar in the current study was modeled as piecewise linear under monotonic
extension with an elastic modulus of 3 x 107 psi and a plastic modulus, E l, of
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• approximately 2-3 orders of magnitude less. Within the context of this description,
the ductility was found to depend only weakly on the strain hardening modulus E .
This weak dependence can be observed from Figures 9.15 - 9.18 wherein the
modulus E varies from E = 3 x 104 psi to E = 6 x 105 psi.

P P P

* 9.5.SDuctility versus Dimensionless Bond Strength.

In the process of conducting this study, it was discovered that one can collapse
all ductility versus bond strength data by graphing that ductility versus a
dimensionless bond strength defined according to a r /E where a and Em are given

* in (9.9). The resulting master curve is shown in T -g. 9.19. T~is curve applies for
cases involving cracking as well as for those wherein no cracking occurs. When
cracking occurs, 2X.. represents the crack spacing. If slip only occurs, 22. is the length
of the specimen.
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* SECTION 10

EXTENSION OBLIQUE TO STEEL

In this section, the response of a R/C panel is examined for the case of
* monotonic extension in a direction which is oblique to the steel layout, Fig. 8.1. The

focus of the presentation is on the influence of the angle 0 on stiffness degradation.
In the analysis to follow, the steel-concrete bond is assumed to be perfect.

10.1 BASIC EQUATIONS AND SOLUTION.

The governing equations for this case are

°11,1 + () P(2 ) 1

- (o + P 2 )i- = 0 (10.1)

eP (2) 0) 11 11 1

126) (2)

11 12 1,1 + 22 1,l

Substitution of (10.2) into (10.1) furnishes

- (1) c 2  26(2) 2  [(2)5(1))dUd 1 1 _____

dx 1  12d; 12 -0

26(l)_ 261(2) (6(2) - (1))
d1 1 2 -0,D12 ' d 2  - w22 d 2  - F

d1 2

where

P11  P(I)cos# * P(2 sin2 (10.4)
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and where P (1), P(2) are given by (5.18).

The solution of (10.3) is readily obtained in the form

1 e + A -Xx + ,

1 1 2 31 4

(10.5)-Xx I  -,x1

U 2) :-cAe - cAe X +Ax + A1 1 e,2 +A3 x1 4

where

S2E [ D (11 + D22i-&2

o (10.6)

D2D D i fo 02
+ D1  (D 2211 1

Equations (10.5) lead to the concrete stress:

^(2p) n(2);(2a) 6 (1) 6 5(2)11 11 D 12 1,1 D 22 1,1

A Xx1  D -Xx1  (1.7

S 1. X('12 - D22j A A2.s X- 612 AD22J(07

The following boundary conditions are now specified:
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6(1) =(2) =0 at x =0

U1) = e at x1 = . , (e specified) (10.8)

(2a) = 0 atx I =x .

Substitution of (10.5) and (10.7) into (10.8) furnishes

1 A 1 L( 12  2̂2) -- 2

2e U D (10.9)
3  A (D12 -c 22 cosh X.

A4 = 0

• where

A ( 12 * D2 jsinh A~Q - 2UR.(6 12 - cDJcosh XP- (10.10)

* The solution of (10.3) subject to the boundary conditions (10.8) can now be
written in the form

(10.11

15(12+^2) sin -x '(1 - c ̂ 22)(cosh X.r1

1 ( ( 12 + 2̂ 2 )sinh x,- X() 12- c 622 ( c s h  1

The displacements (10.11) furnish the stresses:

n-l)- R^ =~ 12 2 (1 - c 12)]cosh Xx 1(n12 211 s X

(10.12)
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(2a attainsa ae Daiu at D 1 D O h
11)~2a A [('12 . 22)( 12 - 22 C 2 cosh' Xx 1

X (D (12 - C D 22 h(612  D22)cosh XR..]

A
Examination of (10.12b) reveals that or attains a maximum at X 0: the

corresponding value of o 2a) is given by

n 11 A 012 D22)(612 - c 6221(l - cosh V) (10.13)

(1a) a

Similarly, examination of (10.12a) reveals that max all occurs at 1  t where

n (1)or 1 a) (x- = p] = 2eV ( ) D D 622 ) cos XP. (10.14)11- A +c(l^2- 1

10.2 FRACTURE CRITERION AND SEQUENCE.

Consider now the problem of predicting the evolution of the primary crack field
in the R/C specimen when the latter is subjected to monotonic extension. If
condition (9.14) is again adopted as the criterion for primary crack* initiation in the
concrete then, since max 1 (  again occurs at the specimen center xX = 0 (see
(10.13)), the fracture sequence as well as the resulting overall stress-strain behavior
can be computed using an algorithm similar to that outlined in Section 9.3.

10.3 STIFFNESS DEGRADATION. *I
* Figure 10.1 shows the degradation of overall secant stiffness with increasing

overall specimen strain for rebar angles ranging from 0 - 0' (rebar along loading
direction) to # = 60 °. Remarkably, the degradation curves fall into a reasonably thin
band for the strain interval shown. However, while the stiffness "decay length" is
similar for different rebar angles, major differences occur in both the "initial' stiffness

Secant and tangent stiffness are equivalent when the interface bond is perfect and
* the rebar remains elastic. A-72
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* (zero strain, E) and the "final" stiffness (a strain. Ef. ). The variations in these
initial and final stiffness with rebar angle are depicted in Figures 10.2 and 10.3 for
steel volume fractions ranging from 0.1 to 1.0 percent. Variations in the final
stiffness are masked in Figure 10.1 by the fact that they all tend to be approximately
an order of magnitude smaller than the initial stiffness.

When reviewing the data depicted in Figure 10.1, it should be recalled that the
steel-concrete interface bond has been assumed to be perfect, and the rebar has been
taken as elastic. As can be observed in the examples cited for the case 0 = 0*.
steel-concrete interface slip and rebar plasticity can be expected to alter the foregoing

• results to a significant degree in some cases.
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* SECTION 11

EXTENSION OF MIXTURE MODEL TO ORTHOGONAL
BI-DIRECTIONAL REBAR LAYOUTS

* The mixture models discussed in the preceding sections apply for uniaxial rebar
layouts. Most practical cases,however, concern bi-directional or tri-directional layouts.

In what follows, the previous mixture theory is extended to include the case of
bi-directional orthogonal rebar layouts. Both rebar plastic deformation and steel-

* concrete interface slip are included in the analysis.

11.1 A 3D CELL FOR TWO REBAR SYSTEMS.

The R/C material to be considered is depicted in Figure 11.1a. As indicated,
* two reinforcement systems are now involved. These are designated as Rebar

System I and Rebar System IT Both systems are presumed to be periodic. This
premise leads to the 3D cell illustrated in Figure 11.1. This cell is adopted as the
basic building block in the following development.

11.2 SCALING AND MICROCOORDINATES.

With reference to Figure 11.1. the quantity

S/3/ / 2 11.1)

is selected to represent the cell "size" and the parameter e A/A is adopted as the

micro-to-macro dimension ratio where the meaning of A is as was indicated in
Section 3.1, i.e., A is a reference macro length. Next, the space variables x and x*

* are defined according to

x = x /A , x =x /A (11.2)

As in the previous analysis for the unidirectional steel layout, the components x. and
x*. represent "macro" and "micro" coordinates.

A
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11.3 MULTIVARIABLE-FIELD REPRESENTATION AND x1-PERIODICITY
CONDITION.

For the case of bi-directional steel reinforcement, the x*-periodicity condition is
• stated in the form

u 2) --T ,xx5] = u2) 4, ii, 2x,x; ,

2 A 1 ,

u 2 X * T1rA 2 , X U2 4 ,X*l'2, (11.3)
1 I1  2 3,1 1 2 &

(2) x - 2 -(2) L ;, X

11.4 TRIAL DISPLACEMENT FIELD (DISPLACEMENT MICROSTRUCTURE).

Two basic premises are now stated regarding the displacement microstructure.
These are:

( 1 The interaction between the two sets of rebar layouts which occupy the regions
A ) and A(3) are negligible (this implies that the interaction body force between uM
and u(3) is negligible).

(2) The matrix displacement microstructure can be decomposed as follows:

U (2) (x, x*) =u 2) ) (X) + I[j (2) (x~x* ,~ x + I(2)[x,x*x)] +O(IE2)
i = (o 1i (1) x2 () 31 (11.4)

where the superscripts I and II refer to rebar sets I and II (see Fig. 11.1).

Under the assumptions (I) and (2) above, the trial displacement fields for the
rebar and concrete are stated in the form

Rebar Set I (material 1; a=1)

'(X, *) = U 1 (X) . e ()g')x ,x) + F~(x)h'(') x;x] (15)
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Rebar Set II (material 3;a=3)

u C3)(x-x* = U 3)(x) F [?I Ix JI(3) (x, xJ*) , J1x) '(3)(x* x,) (11.5b)

Concrete (material 2:a=2)

u ,2)(U 2,xx.x E ? = x . [x) (2) (x,x*) . JI (x) (2)
I i i

(11.5c)

* where

?Ix W W(x (11. .6a)

A typical cubic cell is now considered as illustrated in Fig. 11.2. Further, a
multiple concentric cylinder's approximation for this cell is adapted as depicted in
Fig. 11.2. (The length of this cell is adjusted to retain the original volume of the

• matrix). Within the context of the concentric cylinder's approximation, the trial
displacements (11.5) are rewritten in the form

Rebar Set I

1) X, * = U ( ) . [ Xc xg (1) (rI coso. 9l (r,)sin8] + o(e)

up1)(X) + C ?(x) x* + ? '' x3~* ui.2i (11.7a)
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where

9(1) rIj (11. 7b)

Rebar Set II

u (3) = U3(x) + E[?"(xWh( 3 r 1 cs 1  .i

P) = 3 (X) + c pi W(x-* +JI)l*.+ 0(e) (11.8a)

where

h h(3 )(r 1 1  r II (11 .8b)

Concrete

*f2 X,* = 2(X) + C[? (x)g(2) (r1 )cosO, + ?I(X)42 ) (r1 )sinO1

+~~~~~ ~ C[I~'(2 1IIcoo+ IX)h (2) (r11)ainG 11 ]

+ 0(62)

P () W * () 1X

+ F(x)( ijX * x2 3*
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* r

(x) (3) ] - 2 2, 1 - x3 + x 1

x3  1

where

(2) (rJ) 11

(11.9b)

h( 2 ) (r1 ) 1 (3) - rI -r

11.5 PRINCIPLE OF VIRTUAL WORK FOR SYNTHESIZED FIELD.

In a manner similar to that described for a single rebar set, the principle of
virtual work for the synthesized field can be written as

6e f [.u 5e dY. + 1 , T*I(6u(2) -6u 1)ldS* dxJ= =,., ,. * E JJ,°l) ijl-

++*II (u( ) - 6ud3) dS;dx*]dV
OV( 3)

(11.10)

= ff~J[ f(G)6u(G)dldV + I ~arzia [ ~ dVl,,dSIf1 (a)) IV f=) VT

* where dV = dx dx 2dx 3. and dV, =dxtdxdx *
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* and where

I= ui,i + ujj + l uij . *(,i* (

*6e 1 [6u. + . + 16u., .* 6u.Al , (11.12)ij 2 ij j,i i j,g*J "

11.6 MIXTURE EQUATIONS OF EQUILIBRIUM.

* The trial displacement functions (11.7) - (11.8) are now substituted into (11.11)
and (11.12) and only those terms up to an including 0(1) are retained. The result is
then substituted in (11.10). together with the displacement functions where required.
Upon again retaining only 0(1) terms, one thus obtains the following form of the
principle of virtual work after appropriate integrations by parts:

7 ( (~yaa _n (aG ), .~ jUadS

Vi =

[ n ( 1 4 a)  + P4)4, J ' )P (n(3)C(3a) + n (3)f 3a) + p I 6U 3)

+ ()(a n (2).f(2a) _-p _ p I 2) o (ia) a () o(2a)
I I I)6 n (1) 12

+ n( 2 )q 2 + n (2) Q I 1

* - a) or (2a) + n(2) I + n (c-,, ('a) -_ (a) *

n (2)qI 2n 2(2) a(2a) +n (2)RI +n(2)Q ](~69,= 9
33 in( 1 ) 23 R2 3 . 32J 2 3
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-[(la) - () (2a) * n 2 )R' - n (2)R,2),19,
31 1 ~(1) 31 11 1

,J-la) n (2) .(2a) n

(2 (3a) + (2)Qii + ,( 2)  , (2a) +nC2)RII n(3)1II
31 +n "11 +  33 1 _ n (3)3311R13

31 ~I~ (3a) n ~~(2a) (2) 1I (2) Aii ~I
I 3 23 (n3 ) 23 23 + ~21J 2

S[ (3a) (2) (2a) (2) II + (2) II]69II

33  1 n(3) 33 33 31 3

[,(3a) 1(2) ,(2a) (2)RII + n(2)RII] AIIor ('1 1 3 ) all + n "11 + 131)

-+ 23 - n(2) a(2) n(2)RI]-II dV = 0 (11.13)

12 23( 12 21j

The Euler-Lagrange equations of (11.13) lead immediately to the following
mixture equilibrium equations and associated internal condensation relations which can
be used to eliminate the variables SI and S.

Mixture Equilibrium Equations.e

n(1)a.la) n(1)f~la) 4 p.I = 0 ,(11.14a)

n(3) .3a) + n(3)f(3a) + p I (11.14b)

n (2),V2a) - n(2)f!2a) _ p 1 PH 0 (11.14c)Ji,J I I

Internal Condensation Relations.
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1 (2a) + n 2 + ' = 0 , (11.15a)
12 1 n (1) 12 R 13 Q

___a__ (2a) (2 QI ,(1.1b

or 22 - 1 n(1) o31 + n R = 01

or (1a) _ or2 (2a) + E--2 (R I + 0 I 1 .5c)

,l 23 2 +~ R13 3 + Q 2)

or) r,1) aa(2a) ,n (2) (.15.)
31 n(1) 31 3 1231.1d

(1a) a (2 (2a) + n (2) RI II + Qi) = 11

33~ [Qnl)33( 3 3 .

(3a) n(2) (2a) n( 2 )( Ii II*

31 (3 2 R R Q 0 (11.16a)

2 1-n( 3 ) O23 QQ2 2 0 (11.16b)

a(( 2) a(2a) + (2 ) R i + ID

11 n(3) 11 11 13) (11.16d)

,(3a) or2 (2a) + (2) Ri I

1n()12 23~ 21J(11e

* Boundary Conditions.

0 0 or n()c(.a) = (a)'.aa) (1.17)

A JI n
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Averages

(aa) = 1 (a) 18dV
* ij n (a) 1.. * (11.l8a)

R I PR~ 1) [[ (I, h H . ) dV(1 8b
i j' nj n (2) 13/2 lf 2) I (11.18j

(Q Q = (2)r3/2 9 ij*)or0dV (11. 18c)

r 1 idS* (11.18d)
,~3/2

3/2 8) 1 (11,18e), f3/2 jjv(3)

in which dS* is an infinitesimal interface area element on BV,(1) or 8V!3); and

I Ua) - 1 f !a)dV.  (11.18f)
* ! ca _n (a) 1'3 / 2 JJJ)(

a) = 1 [[(y a) dV (11.18g)

I (a) /n JJJ 3 2 V*

11.7 MIXTURE CONSTITUTIVE RELATIONS.

* In order to generate appropriate mixture constitutive relations to accompany the
equilibrium equations (11.14), one can utilize a mixed weighted residual procedure. The
situation here is similar to that encountered for the case of a single rebar set.
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Trial Displacement Field.

The trial displacement field (11.7) - (11.9) is again used in the mixed residual
procedure. This field can be expressed in the form

u(a) (x,x*, ) = U(a) (x) C G(a) (x*)S (11.19a)

where

1 2 2 11 1 1 3 '2 '3 1 11 2il

This trial field leads to the following strain field via (11.11) when terms of 0(1) only
* are retained:

e(a ) = E(U()) + q(a)(x*)S(x) (11.20a)

where

E(U(a)) [u, 11 2 2 'Uu31 , u3 3,21u, u3  ,u1 ,2  2,1

Trial Stress Field.

The trial stress field to be used in the mixed residual procedure is selected in
the form:

* a) (x,x*;) r ) (x) + 6 ijk.(x*) x) t (2() (11.21a)
,j Ij iE()

where

1[ T ijk~x** = 0 ,(11.21b)

and where or() are defined by
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(a) 1 x I(a)a221) 3 () *) + P (x) +h (x*)

o2 pI I W (a) 3 PI (x*) hI (a) (x3) 1

33(1) 4 2 4 3x* ~xh x)+~, xgIUx11 1I(a) h 1 1

3(1) 1 P(x)h ( a) (x) + 1P (x)g I ( a) (x*) + -

2r 1 PI(x)A(a)(x) + ("x) + 4 1 )g ()

a3(1 1 1I 1 a Ix (a) x* 1I 1at1(1 P1 (x) g () + x )

(11.21c)

or by

(a) H.a) (X-)P WP H a) ( "* (x) (11 .21d)
(1) 1. 1 1

where

P1  [PIIp IJT ,PI I'PI 2I I]T (11.21.)

Thus, (11.21a) Lan be rewritten as

(a) (x,x*) = "r(a) (x) + 6a2 T( 2 ) (x*)t( 2 ) (x) + eH( ) (x*)Pi(x)

eef ) (X*)PII () (11.22)

Several remarks are in order at this point. First, the first two terms of the trial
stress field (11.22). i.e.

or(a) =r (a) Wx + T ( 2 ) (x*) t,(2) 6a

(00a

was constructed to satisfy () - 0 and may be obtained from the displacementji(o),j*-
(a) in (11.l9a). Second, it is noted that
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(2) )(x*) dV,,= 0 H {JJ d* * ()\

so that

I aI (2) dV* = 3/2 r(2) X* (o) * T (x)

v (2)

i.e., r(a) is the average stress a(Ga) .

Finally, the forms p1 and Pi[ introduced where constructed to satisfy the
integrability condition for u(a) .i(2)"

* r3/2 I J(l)*dAI ' 3/2 G..(.),.dA11  P.I.f8) (18V 1(3) I

Local Constitutive Relations.

The local constitutive relations for each component material are specified in the
rate-form

= (11.23)

where e(2) is a 6x1 matrix. C(a) is a 6x6 matrix, and ;,([ ) is a 6x matrix. The

coefficients C(a) are tang,,iii moduli. Thus, (11.23) incorporates incremental plasticity.
All stresses in (11.23) are transverse stresses.

Mixed Weighted Residual Form.

The appropriate form of the mixed weighted residual for the present problem is

3 (a) T (a)T , 6; [T (a) -A -)O
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(2) 6 (1)]Tt dSdx + 16(3),dIdx*
Vp a) V. 3 )

- 6[ F [L's(a)Tf(a)dV dV + I u(a)ij(a)dV~ dS,
a=1 .Va(a) Ta=1 a)

(11.24)

where

* s(a) = [ e2e 2e 2e (a)T (11.25)

Homogenized Rate Constitutive Relations.

* Upon substitution of the fields

.(a) = O(a) (X) + c(a) (X*)§(X)

O (a)e E(0 (a) + q*a) (x*), , (11.26)

;(a) ;(a) + 62(2)(x*.)(2) + Eliza)(x*)pI(x) + H(a) X4IW

into (11.24). one obtains, as the Euler-Lagrange equations. the rate form of (11.14) -

(11.16) together with the rate constitutive relations

S[ (a)(x*)dV- C(a)dV] ;a)

* 6a2[~[ C(a)T (2)dV2j t(2) + IE (aIi )d)~
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= )dV. 0 , a = 1-3; (11.27)

T JI2  (2) 4(2) dV] T 32 C 2 .d(2) T2 2 2 2
f*(2)

IV( 2 )T2cd ~ [IV 2)2)cHdv]"=0

* (11.28)

~(02 ) H (fa) TQ(a)dV, 1a T aH~ C(a)dV] ;$()
6 a V ) a .vP()

H.FJ2)TCl(2) T(2 (2) - 2 [J XE) H )X dV 3 Z

- H a) TC(a)H(a)dV 3 T 0 (11.29)

-. V* I.z ())
(0(2) _- () a id ~~V;a

ILf(2) T (2) T (2)d (2 ~2 L Tf( ~P

3 L(a C ( 2) - f

- 2F *j Hi,)C )Hf dV*] '= 0 . (11.30)
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* ABSTRACT

A new internal variable theory of plastic-fracturing solids is described. The key
concept upon which the theory rests is a mapping that transforms the current.
damaged and generally anisotropic state of a material into an isotropic undamaged

* state. The effect of cracking on the constitutive behavior is accounted for through a
second-order integrity tensor J. which is governed by an evolution equation. The
integrity tensor also allows anisotropy to be described in a convenient way without
introducing a fourth-order tensor, as is the usual approach. The model describes both
stiffness degradation and yield limit degradation due to developing damage, as well as

* dilatancy, and contains, as special cases, several models that are noteworthy, including
the classical elastic-fracturing model and the endochronic plasticity model. Finally, the
model is applied to recent data on the response of plain concrete to simple tension in
the presence of developing damage.
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* Section 1

INTRODUCTION

Many of the important questions faced by the Air Force today regarding the
* hardness of concrete defense structures require a knowledge and understanding of the

likelihood that a given structure will fail under a prescribed loading environment. To
address this issue in the most cost-effective manner, analytic methods must be
available to allow system designers to systematically vary design parameters in an
expedient and efficient manner so that an optimum structural design can be achieved.

* Finite element methods are now available for this purpose, but the results obtained
with these methods can only be as accurate as the constitutive relations used in
conjunction with them. To examine the hardness of concrete structure requires a
constitutive model of plain concrete which not only is capable of describing the
inelastic behavior of intact, unfractured material but is capable of describing developing

* damage and cracking and their effect on the overall constitutive behavior. For a
constitutive model to be useful in addressing these important issues, it must be able
to treat both elastic, plastic and cracking behavior.

Recently, Valanis and Read (1986) developed an advanced nonlinear constitutive
* model for plain concrete, on the basis of the endochronic theory of plasticity. The

model was applied to an extensive ;et of laboratory data for a medium strength plain
concrete reported by Scavuzzo, et a. (1983). The test program consisted of a variety
of complex loading paths designed to explore different facets of concrete behavior.
The stress paths were selected, however, so that no significant (macroscopic) cracking
of the concrete occurred during the tests. As shown by Valanis and Read (1986),
the endochronic model for concrete was remarkably successful in describing the
behavior of the concrete over the wide variety of complex stress paths explored in the
laboratory.

The constitutive model for concrete mentioned above has several limitations,
however, which restrict its application to stress states below failure. First, the model
is incapable of accounting for the effect of macrocracking on material behavior.
Secondly, since the model is isotropic, it is unable to account for the anisotropy that
develops when significant macrocracking occurs in preferred directions. Finally, in the
case of shearing at fixed hydrostatic pressure, the model exhibits only compaction; the
dilatant behavior observed when cracked concrete is sheared cannot be described by
this model.

B3-6
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* Recently, Valanis (1987. 1988a) developed an approach for extending the
endochronic theory to include the effects of damage and fracture. The result is a
new endochronic plastic-damaging model which possesses all of the attractive features
of the earlier concrete model (Valanis and Read, 1986) but which also can treat
cracking. anisotropy and dilatancy. The resulting model appears to have the desired

* features for describing the complete spectrum of concrete response, including plastic
flow, cracking and dilatancy. Anisotropy is accounted for in a clever way through the
use of the second-order integrity tensor j rather than by a fourth-order tensor, as is
the usual approach. The use of a second-order tensor for this purpose greatly
reduces the analytic complexity of the model and simplifies the experimental

* determination of the material parameters. The model describes both stiffness
degradation and yield limit degradation due to developing damage and contains, as
special cases, several models th'at are noteworthy, such as the classical elastic-
fracturing model.

* Parenthetically, it should be noted that since the endochronic theory contains
classical plasticity as a special case (as shown by Valanis, 1980). the approach
described herein can also be used to determine the form taken by classical plasticity
theory when there is cracking, although this has not been done in the work reported
herein.

The present study represents the first attempt to explore the application of the
new endochronic plastic-fracturing theory to plain concrete and to develop a numerical
approach for dealing with the system of governing equations computationally. After
the basic formulation of the new theory is given, attention is focussed on the special
case of uniaxial loading to elucidate some of the basic features of the theory. The
model is applied to the problem of the response of plain concrete to uniaxial tension
in the presence of developing damage, using the recent laboratory data reported by
Gopalaratnam and Shah (1985). It is shown that the resulting model describes the
observed behavior very well, including the post-peak response and the unloading-
reloading behavior. The observed hysteresis during the unload-reload cycles is,
however, somewhat greater than the model predicts.
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* Section 2

FORMULATION OF MODEL

In this section, the basic formulation of the endochronic plastic fracturing model
* is given, following the work of Valanis (1988a). The key concept, upon which the

formulation rests, is a mapping that transforms the current, damaged and generally
anisotropic state of a material into an isotropic undamaged state, which is called the
"transformed state". Since the standard endochronic plasticity theory applies to
isotropic, undamaged material, it is taken here as the constitutive model for theS0*

material in the transformed state. Then, by using the mapping from the
transformed state to the current state, the constitutive relations for an endochronic
plastic-fracturing model are found. The effect of cracking is reflected through a
second-order integrity tensor J, which is governed by an evolution equation.

* 2.1 MAPPING FROM CURRENT STATE TO TRANSFORMED STATE.

To begin, we note that damage and fracture produce a reduction in material
integrity. With this in mind, an integrity tensor, t, is introduced which has the
following properties: It is a second-order symmetric tensor which is equal to the unit

*tensor f in the undamaged virgin material and to the null tensor in fully fractured
materials, i.e., material which cannot support tensile stress in any direction. The
integrity tensor j is positive semi-definite but can be regarded as positive definite in
the sense that its norm may be made as close to zero as one wishes, without it
actually being zero; this proves to be a useful concept for the purposes of the ensuing

* analysis. Inasmuch as t is symmetric and may be regarded as positive definite, it can
be represented in the polar form

t = I T (2-1)

* where P-1 exists and is unique, i.e..

B-1 B = 6.. (2-2)ir rj Ij

In indicial notation. Eq. (2-1) reads

0ij = BkiBkj (2-3)

* Other constitutive models, such as those from classical plasticity, for example.
could also be used to describe the material in the transformed state.
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* On the basis of the above considerations, the free energy density for a plastic-
fracturing solid may be expressed in the following form:

q 2j j - q rj) (2-4)
• r

where

C A j i j, (2-5)ijk UR) = A1 ij k. 2 j.

Here, in the formalism of internal variable theory, the integrity tensor j is an internal
variable which characterizes damage, while the internal variables r characterize plastic
deformation.

The stress 2 is obtained from # in the usual manner, i.e.,

a (2-6)

which, on the basis of Eq. (2-4). leads to the result:

A rI {+~ A r - q j (2-7)

We now consider a mapping A = A(E) from the current damaged state to the
"transformed" state, as shown in Figure 1. If 0 is taken as the transpose of the
deformation gradient E between the current and transformed states, i.e.,

= ET (2-8)

then the strain tensor t and internal variables 2 r in the transformed state can be
* defined in terms of the strain tensor t and internal variables 2 r in the current state

as follows:

IEk. =Bki B i (2-9)

or B-9
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= B-B -  
. (2-10)k. ki tj ij

*and
r

= BBj q r (2-11)

* or

r = B1 B- r (2-12)q k9 k i p.j qij

The use of Eqs. (2-2), (2-3) and (2-9) to (2-12) in Eq. (2-4) "normalizes" this last
equation and leads to the following simple expression:

r~A r r ijL r. (2-13)
r

which implies that the material in the transformed state is isotropic and undamaged.

The stress e in the transformed state may be obtained by differentiating
Eq. (2-13) with respect to g, leading to the expression:

Gij Z A 16 j(kk - q 6 A~e 2 qij) (214
• r

Upon comparing Eqs. (2-7) and (2-14). we find that

1B -1 B ij (2-15)
KL ik jpQ.i

or

or kC= Bik Bj-ij (2-16)
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In view of the above developments, it is concluded that the thermodynamic analysis
may be done in the transformed state, where the deformed material is both isotropic
and undamaged, and then mapped back to the current deformed state, in which the
material is both damaged and anisotropic. by means of the transformations (2-9).

* (2-10), (2-15) and (2-16).

2.2 CONSTITUTIVE EQUATION FOR THE TRANSFORMED STATE.

Consider now the evolution equation for the plastic internal variables r in the
• transformed state, which we take in the usual form:

d.r

r = 0 (2-17)

Here, br is at isotropic tensor of the fourth order (the "resistance" tensor), in which
case it has the following representation:

* r r 6
b i jk= 1 6 ij6kf + bk252ik 5j (2-18)

Note that the tensor br in the current state is related to V in the transformed state
by the tensor transformation:

br - -- br
i j k= irBjs Bkt q q (2-29)

Therefore, in view of Eqs. (2-18) and (2-19). it follows that:

* b~r r r (2-20)
,jkP- = b10i j OkP- + b 2 ik~f. (220

which shows that the integrity tensor j affects the resistance tensor b

* The solution of Eq. (2-17) for a generic r is given elsewhere (see Valanis and
Read, 1989). and will not be repeated here. Briefly, 2r is found from Eq. (2-17).
using Eqs. (2-13) and (2-18). The result is substituted into Eq. (2-14). leading to
the following result:

B-12

0



zD . zH dekk
Cij =2 /(z D - Z')dz " dz" + 5ij K zH - Z' dz" (2-21)

0 0

where

dz dzH (2-22)D F FD  H kF H

and

01 delId~ + k (d,^f k)2  (2-23)

Here. F and F are hardening functions for deviatoric and hydrostatic response which
* satisfy the conditions:

FD ) 0 , FH > 0 (2-24)

-* Furthermore, the double bars around a symbol denote its Euclidean norm, and

0 (zD) is r e

r (2-25)

N~z) 7- Ir
r

*where rs KrP a r and r0 are all positive constants. Specifically:

Ar Kr r 1 r
r 2 K 1 A2

(2-26)
r -'r Pr = 0r (b 1 + b )

b2

B-13

0 m I I I I



The above constitutive equation can alternately be expressed in terms of plastic
strain integrals with singular kernels. The details for accomplishing this are also given
by Valanis and Read (1989). Thus, Eq. (2-20) may be written in the form:

D deF.H Ek
= - z) dz dz' j ZH( - zJ- dz' (2-27)

0 0

* where p(z) and O(z) are weakly singular kernel functions that satisfy the conditions
p(O) = 0(0) = w such that the integrals

fzD rzH

* J p(y)dy , J (y)dy

0 0

exist for all zD  0 and zH 0.

To complete the specification of the constitutive model for the transformed state.
we must add Hooke's law:

a (k + 2#k j 2(iE j - J(2-28)

where X and # are the Lame constants.

2.3 CONSTITUTIVE EQUATION FOR THE CURRENT STATE.
The relation between e and Z in the current deformed. damaged configuration is

found by using Eqs. (2-8) and (2-16) in Eq. (2-26). with the result:

'zD od

rs =BriBsj - Z')-- (BkkJ

0

Z H (2-29)

J- r ddz
Ors ON -z V-- (klekL
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0

To eliminate the tensor Q from the above expression in favor of the tensor j we
proceed according to Valanis (1988b) in the following manner. Since t is a
symmetric, second-order tensor, it can be expressed in the form:

j = N j * N T  (2-30)

where N denotes the matrix of the eigenvectors of t. and i* is the (diagonal) matrix
of the eigenvalues of J. Then. in view of Eqs (2-1) and (2-30). P can be expressed

* in terms of j as follows:

§ = (U*1/2) NT (2-31)

• which, in indicial notation, reads

BiJ = i k) 1 / 2 Njk  (2-32)

Thus, on the basis of Eq (2-32). Eq (2-29) can be expressed solely in terms of .

It should also be notel that there are conditions under which Eq (2-29) reduces
to a more simplified form. Consider. for instance, the following conditions:

(i) § is a slowly varying function of z

(ii) p and 0 are rapidly decaying functions such that F(z') may be
evaluated at z' = z in the integrals on the righthand side of

* Eq. (2-29).

In view of (i). we can write:

(Bde

(2-33)

d f~~ k9.
* dz" (Okepk Ok_ dz
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Therefore, on the basis of Eqs. (2-33), Eq. (2-29) can be written as

rs = Orkst4 PZD - z' dT dz"

0

(2-34)

+ • rs~kf ONz - z.) d---K dz"

0

Consider now the expression (2-23) for the intrinsic time scale d5. Upon using
Eqs. (2-8) and (2-9). Eq. (2-23) transforms to the following expression for d5 in the
current state:

2 dep deP + k 2 2  (2-35)d52uOp Oqn pq mn (~ ~

Note that the tensor de P in the current configuration is not deviatoric, i.e.,
tr(d p ) $ 0; this follows from the fact that the current state is, in general,
anisotropic. To see this, recall the expression for the deviatoric plastic strain 2P in
the transformed state:

p ~p 1t (2-36

* Then from Eqs. (2-9) and (2-10), we can write, using matrix notation:

op -1 ^p(,-l1T p = -1 ^p(,-l)T (2-37)

* Substituting Eqs. (2-37) into (2-36) leads to the result:

= - 1 J-1[§-1)T tr['P) (2-38)
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It can be shown that

tr(?P) = tr(j iEP) (2-39)

Thus. Eq. (2-38) can be written as

e p = -1 0-1 tr( EP] (2-40)

since, from Eq. (2-1). we have - = ( -)T. As a result, it follows that

tr[P) = tr[P) - 1 r( -P)tr('J- ) (2-41)03

An inspection of Eq. (2-41) shows that tr(I P) = 0 only when j = a. i.e., in the
initial undamaged (isotropic) state.

To express the righthand side of Eq. (2-35) solely in terms of the tensor dkp,

we proceed as follows. First, it can be shown from Eq. (2-40) that

j p= j t - ! tr(f -*~ (2-42)

Equation (2-35) can be written in the following matrix form:

d r-,=,- dP. ( g d " - ,) .T) +,2(,-[, - dk2t)[ (2-43)

Upon substituting Eq. (2-42) into (2-43). we find:

de = tr{ f, dtP) (dtP •  } k k2 - )(tr[i. dtP)) 2  (2-44)

In the isotropic, undamaged transformed configuration, Hooke's law has the
following form, which was given earlier in Eq. (2-28):

g = A~ trt - .Pa 2js(L - 9)(2-45)

• " This expression was first developed by H. Murakami.
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To express Eq. (2-45) in the current damaged state, we introduce the transformations
given by Eqs. (2-9) and (2-16). Proceeding in this manner, it follows that

tr f P) + 2r[4 - (, -s - (2-46)

which. in indicial notation, reads

a- C 2#s Oik PI - fpJ(2-47)
Sij = ijkLIkt kJ ij ]

For many geomaterials, including concrete, the hardening functions are typically
of the general form:

F H = FHIEP

(2-48)

F D F FD(or)

where ep and a denote, respectively, the plastic volume strain and the hydrostatic
pressure in the current configuration.

To summarize the main results from this section, the system of equations which
govern the behavior of the endochronic plastic-fracturing model in the current damaged
state consist of Eqs. (2-22). (2-29). (2-44). (2-46) and an evolution equation for J.

The key to the success of the damage model described above lies in having the
appropriate evolution equation for j for the material of interest. Ideally, it would be
desirable to have the evolution equation reflect the underlying micromechanical fracture
mechanisms. A research effort to develop such an evolution equation for j is
currently being conducted by Valanis in a separate AFOSR-funded program, but the
results from this study are not expected to be available for sometime.

In the following section, the response of the model to the special case of
uniaxial loading is considered in detail to explore some of the general features of the
theory. The model is then applied to the recent data by Gopalaratnam and Shah
(1985) on the response of plain concrete to simple tension in the presence of
developing damage and unloading-reloading cycles. For this purpose, an evolution
equation suggested by the data is adopted and successfully used.
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* Section 3

UNIAXIAL LOADING

In this section, the case of uniaxial loading is considered in detail to illustrate
• some basic features of the endochronic plastic-fracturing modei described in the

preceding section. First. the governing equations for uniaxial loading are deduced from
the general equations given in Section 2. Then. several interesting features of the
model are discussed, including the several important special cases that the model
reduces to under certain conditions. Following this, an incremental scheme is

* developed for integrating the system of governing equations. Finally, the model is
applied to the recent laboratory data of Gopalaratnam and Shah (1985) for the
response of plain concrete to uniaxial tension, and it is shown that the model
provides an excellent description of the observed behavior.

0 3.1 GOVERNING EQUATIONS.

Consider the case of uniaxial tension in which the applied stress is directed
along the x.-axis. In this case, we have B = 0 for i 0 j and a22= o33. From
Eqs. (2-9) and (2-16) we therefore find that

0
Ol1 = 11 ll

Ell = Oil Ili (3-1)e• P
11 = Oi1 ll

the constitutive behavior of the endochronic plastic-fracturing model in the
transformed state is described by the system of equations given in Section 2.2 which.
for the case of uniaxial loading and plastic incompressibility, reduce to the following
form:

0ll= E(z - z') d dz" (3-2)

0
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11 = - 1) (3-3)

2 illl

dz = dc(3-5)-F

Here, E(z) is a weakly singular kernel function, E denotes Young's modulus, z
* is the intrinsic time and 5 is the intrinsic time scale. In addition, F represents the

shear softening function, and the vertical bars surrounding a symbol denote its
absolute value. Note that Eqs. (3-2) to (3-5) are the governing equations for the
standard (undamaged) endochronic theory.

* The kernel function E(z) is given, in the usual manner, by the Dirichlet series:

E(z) = __ Ae (3-6)

-•r=1

where, in order to satisfy the conditions imposed by the weakly singular nature of
E(z). i.e., E(O) = * and fo E(y)dy < 0, the positive constants A and a must
satisfy the following conditions:

ZAr

r=l
(3-7)

a< 0
r=l r

* As shown by Valanis and Read (1989), E(z) is related to p(z) according to
the expression E(z) = 3/2 p(z)---20.
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* From experience, we have found that, for most materials, only two or three terms of
the series (3-6) are necessary to provide an adequate modeling capability. In view of
this, we write

n
'~:~- a z

* E(z) Are (3-8)

r=1

where n is finite and care is taken to insure that the infinitely large value of E(O) is
suitably approximated by a large finite value.

The above system of equations, which apply to the transformed state, are now
mapped to the current (damaged) state through the use of Eqs. (3-1). The following
set of equations are then obtained for the current state:• Iz

o = E(z - z') dz" (3-9)

0

o = 2Ec - (3-10)

2= d~ d(0E)I (3-11)

dz = - (3-12)

where the subscripts have been suppressed for convenience. To the above equations,
we must add an expression which defines the manner in which # depends upon the
deformation.

In uniaxial loading, it is reasonable to assume that 0 will depend upon a variable
related to the axial extension, and the three likely candidates are the total axial strain
e. the elastic axial strain e and the plastic axial strain eP. During the course of
applying the model to the uniaxial concrete data of Gopalaratnam and Shah (1985)
(see Section 3.4), we investigated the dependence of 0 on each of the three strain
variables noted above and found that a dependence on the axial plastic strain EP was
preferred. The reasons for this are as follows. For the case in which 0 is taken to
depend on the total strain e, it was found that the model was overly sensitive to the
form adopted for O(e). Very slight deviations from a form which gave good
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* agreement with the Gopalaratnam-Shah data lead to difficulties in numerically
integrating the system of governing equations; this was not the case when 0 was
taken to depend on the axial plastic strain. J. Furthermore, on the basis of the
results described in Section 3.4, it was found that 0 could not be described uniquely
as a function of the axial elastic strain, : , i.e., for a range of values of Fe _ was
double-valued. Again, this was not the case when 0 depended on the axial plastic
strain, eP. For the reasons cited above. 0 is taken to depend on J . We therefore
adopt the general form:

0 = le (3-13)

where EP denotes the plastic component of the total tensile strain E, i.e., E - -
e and the subscript m indicates the maximum value attained.

* The corresponding evolution equation for * is then

H[E dEp  if dEp > 0 on EP Jm
d = (3-14)

d 0 ,otherwise

where H S do/dEp. Thus, in the event of unloading from a tensile strain state, we
have dEP = 0 and therefore d# = 0. as should be.M

• 3.2 COMMENTS ON THE MODEL.

The model described above contains, as special cases, several models which are
particularly noteworthy, whose responses are depicted in Figure 2. We note, first of
all, that there are ideally two kinds of damage (or degradation) that are observed in

* materials (see Bazant and Lin, 1988):

1. Degradation of material stiffness, which is caused by microcracking,
nucleation and void growth, and elasto-plastic coupling (Maier and
Hueckel, 1979).

2. Degradation of yield limit, resulting from a reduction in the areas
of cohesive or plastic-fractional connections. Such degradation does
not produce a reduction in the material stiffness.
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The observed behavior of many real materials, including concrete and rock, suggests
that their responses involve some combination of the above two types of degradation.
The endochronic plastic-fracturing model described above contains both types of
degradation. The softening function F describes yield limit degradation, while the

* function 0 reflects degradation in stiffness.

With the above discussion in mind, let us consider the special cases of the
model shown in Figure 2. First, if the plasticity of the model is suppressed and 0 is
taken to depend, say, on the axial tensile strain e, then the model reduces to the

* classic elastic-fracturing model (see Dougill, 1976, for example), which exhibits only
stiffness degradation. In this case, the slope ofthe unloading/reloading path decreases
with increasing strain, but all unloading paths pass through the origin. The response
of this special case is shown in Figure 2(a). Secondly, the general model reduces to
the standard (non-softening) endochronic plasticity model when there is no damage,

* i.e., 0 = F = 1. In this case, the response of the model is depicted in Figure 2(b).
Thirdly, if one sets 0 = 1, the general model reduces to an endochronic plastic-
fracturing model with yield limit degradation, whose response is shown in Figure 2(c).
Note in this case that the model unloads and reloads with the same slope as the
initial elastic slope. Finally, when both yield limit degradation and stiffness

* degradation are present (0 1, F 0 1). the model has the response features
illustrated in Figure 2(d). Here, the slope of the unloading-reloading path decreases
with increasing strain, and the unloading paths no longer pass through the origin due
to the development of plastic strains. These features are representative of many
materials, including concrete, as we will demonstrate in the sequel.

There is also another interesting feature of the model which should be noted. If
the model is subjected to monotonic increasing tensile strain, the corresponding
behavior in the transformed space (a - e) may or may not involve unloading,
depending upon the relationship of the function 0 to a critical curve, which we will
call 0*. This critical curve is the curve in 0 - eP space which satisfies the condition
d(O P) = 0. Given a functional relation for 0, say O =(EP). the critical curve is
defined by the expression.

ep

0O = 1xl dx (3-15)

0.
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If the curve O(eP) lies above the critical curve in the region where d(#E p) > 0. such
as curve A in Figure 3, the response in the transformed state will involve only
loading, as shown in Figure 4. This follows immediately from the relation (3-1c), i.e.,

* d =- d(OF p ) (3-16)

On the other hand, if the curve O(EP) falls below the critical curve at some point P
in the region where d(OP~) < 0. such as curve B in Figure 3. unloading will take
place in the transformed state, since, as shown in Figure 4. in view of Eq. (3-16).
de p will be negative. The occurence of unloading in the transformed state does not.
however, affect the continuity or the smoothness of the response in the current state,
as our numeical studies have shown. Thus, the model allows unloading (de < 0) to
take place in the transformed space concurrently with loading (de > 0) in the current
state.

In the following section, an incremental numerical scheme is presented for
integrating the system of equations (3-9) to (3-12) in conjunction with the evolution
equation (3-14).

3.3 AN INCREMENTAL SCHEME FOR INTEGRATING THE
GOVERNING EQUATIONS.

Let us now consider the governing equations for the current states which are
given by Eqs. (3-9) to (3-12) and (3-14). with E(z) defined by Eq. (3-8). If we
substitute Eq. (3-8) into Eq. (3-9), we find that

0n

n= r (3-17)

* r=1

where Iz
A e -a r z e .ar.Z d (OeP)dz (3-18)

• Q~r = re TT Pz

0.
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Figure 4. Stress versus strain in the transformed space, showing the
corresponding responses for the two diffeent function O(J) depicted
in Figure 3.
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* Differentiation of Eq. (3-18) with respect to z leads to the expression

dQr + ar Q rdz =Ard(OA) (3-19)

* If we now set:

n

A 7ZA r(3-20)

r=1

n

T arQr  
(3-21)

r=1

then, in view of Eqs. (3-17) and (3-19). we can write:

do = [A d (EP) - Q dz] + do (3-22)

Also. Eq. (3-10) may be differentiated to give:

do = 2 E0 (dE - dep) + 20E0 G - EP)do (3-23)

Returning now to the evolution equation (3-14). we rewrite this in the form:

do = H dep  (3-24)

where

rH (e if deP > 0 and E P
H = o , otherwise m (3-25)

Equation (3-24) may now be combined with Eqs. (3-22) and (3-23) to give the
following expressions:

* do = (A#2 + AoePH . cdP - OQdz (3-26)
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do = (, 2Eod_[02 E. - 2,EoHLc - P)]dP (3-27)

Upon eliminating do from the above equations and solving for dJ. we obtain
the expression:

dEP = aode + a 1dz (3-28)

where

U0  2 2 00 2 (A + E) + H (AoeP -

(3-29)

1 (A + E)O2  + H[A eP - or

00 From Eqs. (3-11), (3-12) and (3-14), we can write

dz = F3 -( . H iPldEP I  (3-30)

For the case of loading, we have dEp > 0. so that Eq. (3-30) may be written as

dz = - - . H Pi(ade + a dz) (3-31)

* where Eq. (3-28) has been used. Solving Eq. (3-31) for dz, we obtain

_ #~G + H CP '
dz 2 F - . de (de > 0) (3-32)3 1 p

*~~~ Ti- 0 + HeJ

Similarly, for the case of unloading (dep > 0), we find

dz = I.. de (de 0) (3-33)
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On the basis of the above developments, the following algorithm provides a numerical
method for incrementally integrating the system of equations (3-9) to (3-12) and
(3-14) when A, a, 0. E, EP, F and H are known at time t:

* 1. Depending upon the sign of ie. use either Eqs. (3-32) or (3-33) to
obtain Az.

2. Determine AJp from Eq. (3-28).

* 3. Compute A0 from Eq. (3-14).

4. Using Eq. (3-19), calculate AQ r for r = 1.2. ... n.

5. Evaluate AQ from Eq. (3-21).

6. Determine Ao, using Eq. (3-27)

The numerical scheme described above is first-order accurate. It can be made
second-order accurate by using R:zhardson extrapolation in conjunction with the above
first-order scheme. For further details, see Murakami and Read (1988).

3.4 APPLICATION TO PLAIN CONCRETE.

There are little data presently available on the complete load-deformation
response of plain concrete to uniaxial tension, and the data that do exist are often
conflicting and confusing (compare the results of Evans and Marathe (1968) with
those of Petersson (1981), for example). The testing of brittle, tension-weak
materials, such as plain concrete, presents two major experimental problems, namely,
(1) the tendency of a specimen to fail near the grips where the state of stress is not
uniaxial and (2) the inability of the testing device to maintain stable post-peak
response.

Recently, Gopalaratnam and Shah (1985) developed experimental techniques which
overcome the difficulties noted above, and measured the complete load-deformation
response of plain concrete to simple tension, including the post-peak behavior. Seven
different mix proportions were used to provide data on the influence of aggregate size.
water-cement ratio, and volume content of aggregates. To insure stable post-peak
response, a small notch was introduced into each specimen at its center and on both
sides, and the displacement across the notch was used to control the loading.
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* Studies showed that the average responses of notched and unnotched specimens were
identical and that both notched and unnotched specimens failed at a single critical
section.

Typical results from the study by Gopalaratnam and Shah (1985) are depicted in
* Figure 5, where the stress-strain response of a medium strength concrete (fc =

6,364 psi) to simple tension is shown. Note that the data shown in this figure were
obtained from four different types of tests. Three tests were done under monotonic
axial straining while a fourth test was conducted under cyclic straining conditions.
One test was peformed with an unnotched specimen, while the rest were notched.

• The axial displacement for one specimen was determined from optical measurements of
the crack width, while local strain measurements were made on another specimen.
Despite these differences in testing procedure, the curves show a remarkable
consistency, when one considers the usual difficulties of testing concrete in tension.

* In the following section, the endochronic plastic-fracturing model described in
Section 3.1 is applied to the data of Gopalaratnam and Shah (1985) shown in
Figure 5. The procedures used to determine the various material-dependent
parameters and functions in the model are described. The response of the resulting
model to monotonic and cyclic tensile straining under uniaxial loading is then

* compared with the corresponding data.

3.4.1 Determination of Material-Dependent Parameters and Functions.

The endochronic plastic-fracturing model for simple tension defined by Eqs. (3-9)
to (3-12), with an evolution equation for 0 having the form of Eq. (3-14) will now be
applied to Gopalaratnam-Shah (1985) data for plain concrete. As an inspection of
this system of equations reveals, the material-dependent functions and parameters that
must be evaluated from data are E , the Young's modulus of the undamaged material:
E(z), the weakly singular kernel function that depends on the intrinsic time, z; the
hardening/softening function F. and the evolution equation (3-14) for 0. The data
shown in Figure 5 permit a direct determination of E0 and 0. but are not sufficient to
allow us to determine E(z) and F directly. Because of this, an interative approach
was used to determine these functions in the present study.
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* From the initial slope of the loading curve shown in Figure 5, we find that
E = 500 psi. Figure 6 describes the way in which the elastic strain fe the plastic
strain ep and finally 0 may be obtained directly from the unloading-reloading paths
shown in Figure 5. Note from Eq. (3-10) that the instantaneous Young's modulus E
at any damage level is given by E = 2 E . In this manner, the following table was

• constructed from the data given in Figure0 5 for the five unloading-reloading paths.

Table I
Information on Current State Inferred

Directly from Figure 5.

C(10 4 )  do(psi) E (psi) t e(104) E p(10°4)

0 0 500 1 0 0
1.4 295 357 0.85 0.80 0.60

0 2.1 170 192 0.62 0.90 1.20
2.9 130 125 0.50 1.00 1.90
3.7 95 81 0.40 1.10 2.60
4.4 68 59 0.34 1.20 3.20

Using the results given in the above table, together with Eqs. (3-1). the information
given below in Table II was derived for the transformed state.

Table II

0 Information on Transformed State
Derived from Table I Using Eq. (3-1).

E(10 4 )  E(10 -4)  V(psi) ce(10 "4)  j(10-4)

0 0 0 0 0
1.4 1.18 349 0.68 0.51
2.1 1.30 27 0.56 0.77
2.9 1.45 260 0.50 1.00

* 3.7 1.48 237 0.44 1.04
4.4 1.51 198 0.41 1.13

The function * describes the degradation of material stiffness, caused by
microcracking, void growth and elastic-plastic coupling (Maier and Hueckel. 1979). As

* noted earlier, we found that 0 is most naturally described in terms of the plastic
strain P?. Guided by the data given in Table I. # was taken in the form:
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Figure 5. Response of plain concrete to uniaxial tension, as measured in four
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EP and # are defined at an arbitrary unloading point P.
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0

=e 1- (1 -#.=exp - ](3--34)

where

k= 9.33 x 10-5

m = 1.21 (3-35)

= 0.20

Figure 7 depicts this relationship and demonstrates its ability to describe the data.

With 0 defined, the evolution equation for 0 is then simply obtained by
differentiating Eq. (3-34), which leads to the result

do = H(,EP)dEP (3-36)

where

H ( P ) = - o +)-(m) e x p  IL (3-37)

and

Co k0'(= - (3-38)

Equation (3-36). with H(c p ) defined by Eq. (3-37) together with the values of the
parameters given in Eq. (3-35). is the evolution equation for 0 used in the present
study.

Turning now to the kernel function E(z) and the softening function F, we note
that they are both associated with the plasticity of the model and, as such, are most
naturally defined with respect to the response in the transformed state, particularly,

the response in the a - eP plane. We note that the response of the model in the
a - CP plane is governed by Eqs. (3-2). (3-4) and (3-5). Assuming that F depends
upon ep, these equations may be combined to give the expression:'Z

=F.3 E(z - z') F[EP(z')]dz" (3-39)
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where

dz - Id;F l ~(3-40)

* and the unknown functions E(z) and F(ep ) are to be determined. As Eq. (3-39)
reveals, these functions appear in product form. which adds complexity to their
determination.

As reference to Table II will show, the data defining the behavior in the a - CP
* plane are very sparse (5 points) and there are no data points for small values of eP

where information is required if E(z) is to be evaluated directly. As a result, it was
necessary to determine E(z) and F(Ep ) indirectly, using an iterative approach.
Proceeding in this manner, the following expressions for E(z) and F(JP) were found to
describe the behavior of the concrete quite well:

2

E(z) = Are e r (3-41)

r=1

where

A= 1.6 2 x 107 psi a, =8.82 x 104

'A2 = 2.69 x 108 psi a2 = 3.99 x 10(5

and

F(P)= FO + (1 - F.) exp[- a Pn] (3-43)

where

a = 6.71 x 103

n = 0.866 (3-44)

Fe =0.20

Based on the forms for E(z) and F(ep) given above, the response of the model in the
transformed (a - ep) space to monotonic uniaxial loading is given in Figure 8. The
corresponding data points from Table II are also shown in this figure for comparison.
As the figure shows, the model describes the data quite well in this space.
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* The specification of the parameters and functions in the model is now complete.

3.4.2 Predicted and Measured Responses.

Using the parameters and functions given above, response of the endochronic
• plastic-fracturing model defined by Eqs. (3-9) to (3-12) was examined for both

monotonic and cyclic tensile strain paths over the range of tensile strains studied by
Gopalaratnam and Shah (1985). The governing equations of the model were
integrated using the numerical scheme described in Section 3.3. The results obtained
in this manner are depicted in Figure 9, where both the model predictions and the

* corresponding data are shown for comparative purposes. As the figure reveals, the
model describes the data quite well. The only noticeable difference between the
predicted and observed responses is that the data show significant hysteresis during
the unloading-reloading processes while the model does not. Overall, however, the
agreement is considered very encouraging.

Finally, we note that during the course of calculating the response to monotonic
straining shown in Figure 9, the dependence of 0 on both the total strain E and the
elastic strain e was monitored. The resulting curves are shown in Figure 10, where
it is seen that 0 decreases in a monotonic manner with E, but is a double-valued
function of E. This clearly shows why attempts to define 0 as a simple monotonic
decreasing function of c proved futile.
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Figure 9. Response of plain concrete to simple tension.
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• Section 4

CONCLUSIONS

This study represents the first attempt to explore the application of the new
endochronic plastic-fracturing theory to plain concrete. For this purpose, attention was
focussed on the behavior of the model under uniaxial loading conditions. On the
basis of the results presented herein, the following conclusions are drawn.

1. To the extent that the model has been explored in the present
* study. i.e., under conditions of simple tension, the model appears

to provide an excellent description of the observed behavior of plain
concrete during progressive failure under tensile straining conditions.

2. In addition to elasto-plastic effects, the model can describe both
* stiffness degradation, through t, and yield limit degradation

through F.

3. The endochronic plastic-fracturing model contains, as special cases,
several models that are noteworthy. This includes the classic

* elastic-fracturing model, the standard plasticity model and a plastic-
fracturing model with yield degradation. The general model includes
both stiffness degradation and yield limit degradation.

4. The key to the success of the model lies in having the appropriate
* evolution equation for j for the material of interest. Ideally, it

would be desirable to have the evolution equation reflect the
underlying micromechanical fracture mechanisms, but the technology
has not advanced to that point. A research effort to develop such
an evolution equation for j is currently underway (Valanis, 1988),
but the results from this study are not expected to be available for
sometimes.

5. In the present study, an evolution equation for # suggested by the
data was used. We found that this equation was most naturally

* expressed in terms of the plastic strain ep. The dependence of
on the elastic strain was found to be double-valued.
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6. A simple and efficient numerical scheme was developed for
integrating the governing equations of the model for simple tension,
and this suggest an approach for numerically dealing with the more
general three-dimensional version of the model.

7. Procedures were developed for determining the materials-dependent
parameters and functions in the model from standard data.
However, because of the sparseness of the available data, several of
the functions had to be determined indirectly.

8. On the basis of the very encouraging results presented herein,
further studies should be undertaken to explore and' validate the
model under more general loading conditions, such as uniaxial
compression and triaxial compression. These cases involve cracking

* patterns that are considerably more complex than occurs under
simple tension and thus should provide a stringent test of the
theory.
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